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ABSTRACT

Sertse, Hamsasew M. PhD, Purdue University, December 2017. Micromechanics
Based Failure Analysis of Heterogeneous Materials. Major Professor: Wenbin Yu.

In recent decades, heterogeneous materials are extensively used in various

industries such as aerospace, defense, automotive and others due to their desirable

specific properties and excellent capability of accumulating damage. Despite their

wide use, there are numerous challenges associated with the application of these

materials. One of the main challenges is lack of accurate tools to predict the initiation,

progression and final failure of these materials under various thermomechanical

loading conditions. Although failure is usually treated at the macro and meso-scale

level, the initiation and growth of failure is a complex phenomena across multiple

scales.

The objective of this work is to enable the mechanics of structure genome

(MSG) and its companion code SwiftComp to analyze the initial failure (also called

static failure), progressive failure, and fatigue failure of heterogeneous materials

using micromechanics approach. The initial failure is evaluated at each numerical

integration point using pointwise and nonlocal approach for each constituent of the

heterogeneous materials. The effects of imperfect interfaces among constituents of

heterogeneous materials are also investigated using a linear traction-displacement

model. Moreover, the progressive and fatigue damage analyses are conducted using

continuum damage mechanics (CDM) approach. The various failure criteria are also

applied at a material point to analyze progressive damage in each constituent. The

constitutive equation of a damaged material is formulated based on a consistent

irreversible thermodynamics approach. The overall tangent modulus of uncoupled

elastoplastic damage for negligible back stress effect is derived. The initiation of
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plasticity and damage in each constituent is evaluated at each numerical integration

point using a nonlocal approach. The accumulated plastic strain and anisotropic

damage evolution variables are iteratively solved using an incremental algorithm. The

damage analyses are performed for both brittle failure/high cycle fatigue (HCF) for

negligible plastic strain and ductile failure/low cycle fatigue (LCF) for large plastic

strain.

The proposed approach is incorporated in SwiftComp and used to predict the

initial failure envelope, stress-strain curve for various loading conditions, and fatigue

life of heterogeneous materials. The combined effects of strain hardening and

progressive fatigue damage on the effective properties of heterogeneous materials

are also studied. The capability of the current approach is validated using several

representative examples of heterogeneous materials including binary composites,

continuous fiber-reinforced composites, particle-reinforced composites, discontinuous

fiber-reinforced composites, and woven composites. The predictions of MSG are also

compared with the predictions obtained using various micromechanics approaches

such as Generalized Methods of Cells (GMC), Mori-Tanaka (MT), and Double

Inclusions (DI) and Representative Volume Element (RVE) Analysis (called as

3-dimensional finite element analysis (3D FEA) in this document).

This study demonstrates that a micromechanics based failure analysis has a

great potential to rigorously and more accurately analyze initiation and progression

of damage in heterogeneous materials. However, this approach requires material

properties specific to damage analysis, which are needed to be independently

calibrated for each constituent.
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1. INTRODUCTION

1.1 Background and Motivation

In recent decades, heterogeneous materials are extensively used in various

industries such as aerospace, defense, automotive and others due to their desirable

specific effective properties and excellent capability of accumulating damage. Despite

their wide use, there are numerous challenges associated with the application of

these materials. One of the main challenges is lack of accurate tools to predict

the initiation, progression and final failure of heterogeneous materials under various

loading conditions.

Although failure is usually treated at the macro and meso-scale level, the initiation

and growth of failure is a complex phenomenon significantly affected by local fields.

During failure, materials locally undergo process of nucleation, coalescence and

growth of micro cavity induced by large plastic deformation particularly for ductile

materials. And materials can also experience an abrupt failure right after the

inception of plastic strain, which is commonly observed in brittle materials. Various

deterministic and probabilistic failure theories have been proposed and widely used to

analyze failure of materials. However, there is a lack of a unified failure theory that

consistently and accurately estimates the strength of materials for various loading

conditions and different material behaviours.

In heterogeneous materials, failure is a multi-scale complex phenomenon which

results from the interactions among various contributing factors such as the properties

of the matrix, the fiber, the matrix-fiber interface, and the fiber volume fraction, and

the loading conditions. The failure strength is also significantly influenced by the

conditions of the interface among constituents of heterogeneous materials.
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Generally speaking, the failure of a heterogeneous material is usually modeled

using both macromechanical and micromechanical approaches. In a macromechanical

approach, failure analyses are performed based on averaged/smeared properties of

the heterogeneous materials. In this approach, for example, for composite laminates,

each lamina may be treated as a pseudo homogeneous orthotropic material. Failure

analysis using this approach is relatively simple for numerical analysis, but it can not

accurately predict the failure strength of heterogeneous materials at the constituent

level due to its inability to account for the disturbance of local fields. On the other

hand, in a micromechanical approach, failure is analyzed based on the local fields

in each constituent of the heterogeneous materials. In this case, failure may be

analyzed based on the averaged local fields or based on the pointwise local fields

in each constituent.

Various failure criteria have been proposed and widely used for homogeneous

materials. It is usually noticed that the proposed failure criteria are modified to

estimate failure strength of composite laminates. These modifications definitely add

limitations or unnecessary assumptions to the failure criteria [1]. Moreover, the

number of material constants required to perform the analysis may also increase

due to the assumptions. However, all of material constants may not be accurately

and uniquely obtained. Consequently, this can result in inconsistent prediction of the

failure strength of the composite laminates. Recently, it is shown that predictive

capabilities of various proposed failure theories are not able to sufficiently and

consistently estimate the failure strength of continuous fiber-reinforced composites

as reported in the world wide failure exercise (WWFE) [2, 3].

In the present work, failure of heterogeneous materials is analyzed based on

the micromechanics approach using mechanics of structure genome (MSG) and its

companion code SwiftComp. SwiftComp is a general-purpose multi-scale constitutive

modeling code for composites which provides unified modeling for 1D (beams), 2D

(plates/shells), or 3D composite structures. This is accomplished using the concept

of structure genome (SG) that unifies structural mechanics and micromechanics. A
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SG is the smallest mathematical building block (or a cell in biological contexts) of the

structure containing many such building blocks. SwiftComp demonstrated excellent

capability both in predicting effective properties and local fields for several examples

of heterogeneous materials [4,5]. Moreover, as MSG is a semi-analytical, it converses

faster than 3D FEA. This makes MSG a more efficient approach. Thus, SwiftComp

is a natural choice to perform failure analysis of heterogeneous materials using its

accurate predictions of local fields.

The novelty of the current failure analysis approach is that it is not specific to any

particular type of heterogeneous materials. There are no any further assumptions

to be made to modify the failure criteria for a specific type of heterogeneous

material. The number of strength constants are fewer and similar to the one used for

constituents. Moreover, during analysis, the strength constants which are calibrated

for one type of heterogeneous material can be used to analyze the failure in other

types of heterogeneous materials with the same constituents. This analysis definitely

helps to produce more reasonable failure predictions that may be used for design and

analysis of composite structures.

1.2 Goal and Objectives of the Current Work

The goal of this work is to enable the MSG and its companion code SwiftComp to

analyze the initiation, progression, and final failure of heterogeneous materials using

pointwise and nonlocal micromechanics approach.

The specific objectives of the current work are to enable the MSG to estimate:

• Initial failure failure using various failure criteria.

• Progressive failure for various loading conditions.

• Fatigue failure and life prediction, and residual stiffness both for ductile and

brittle heterogeneous materials.
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• The effect of imperfect interface on the failure strength and effective properties

of heterogeneous materials.

These analyses are conducted using the nonlocal approach, i.e., averaging the

pointwise local fields within its neighborhood over a specific characteristic length.

The progressive damage and fatigue life predictions are analyzed using continuum

damage mechanics. Various failure criteria are also used to analyze the initiation

of failure at the material point and also investigate the progressive damage in each

constituent of heterogeneous materials.
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2. LITERATURE REVIEW

2.1 Failure Theories and Criteria

2.1.1 Failure Theories

Numerous researchers have proposed various failure theories to analyze the

complex failure behavior of materials at different levels of abstractions. These failure

theories can be categorized as deterministic and probabilistic failure theories.

I. Deterministic Failure Theories

These theories are obtained using certain phenomenological constitutive equations.

These can be energy based failure constitutive equations and generalized failure

constitutive equations. In energy based approach, it is usually postulated that failure

of materials occurs when the distortion and/or dilatation energies reach the critical

value. Distortion energy is responsible for the change of shape of material while

dilatation energy represents the change of volume of materials under any specified

loading conditions. The energy in the material is casted in the form of constitutive

equation to analyze initiation and/or final failure of materials. The most common

constitutive equation based on the dilatation and distortional energies [6] may be

expressed using polynomial expansion of invariants of strain/stress tensor as

φ = αI1 + βI21 + γJ2 + .. (2.1)

where α, β, and γ denote material dependent constants, I1 denotes the first invariant

of stress tensor and J2 denotes the second invariant of the deviatoric stress tensor.

Micromechanics based constitutive models have been also widely used to model

the growth and coalescence of voids in ductile materials [7–10]. These models are used
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to perform failure analysis for specific finite void sizes and shapes. These models are

not applicable for complex void shapes and cracks, and also for materials without

voids or defects. On the other hand, the failure of ductile materials is also extensively

analyzed using thermodynamic free energy. This approach is also used to predict

the process of nucleation, coalescence and growth of micro cavity which is formulated

based on a consistent thermodynamic framework called continuum damage mechanics

[11–16].

For composite laminates, a general and comprehensive failure theory was proposed

by Goldenblat and Kopnov [17]. In this approach, there is no a priori assumption

made unlike many other failure criteria. However, there are certain principles adopted

which are merely based on the nature of the phenomenon of failure. The generalized

failure constitutive equation for the stress space can be expressed as

(ΣΠikσik)
α + (ΣΠpqnmσpqσmn)

β + (ΣΠrstlnmσrsσtlσnm)
γ + ... ≤ 1 (2.2)

where α, β, and γ denote material dependent constants, Πik, Πpqnm, and Πrstlnm

denote components of symmetric second, fourth, and six-order strength tensors, σik

denote the components of the second-order stress tensor. In this theory, it was shown

that the shear strength of the composite laminate is dependent on direction (sign) of

the shear load which is observed to be consistent with experimental observation [17].

The main drawback of this approach is that it requires a large number of strength

constants, which may not be easily quantifiable.

II. Probabilistic Failure Theories

Failure may be modeled using various probability functions among them the most

common one is the Weibull’s probabilistic approach [18–21]. This approach, usually

referred as the weakest link theory, postulates that the failure strength of the structure

is governed by the weakest point in the structure. This implies that larger structures

are more susceptible to failure compared with smaller structures at the same stress

level. This is mainly due to a higher probability of flaw in the larger structures. This
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approach is extended to capture the location of failure and also to analyze the effect

of loading history on the failure strength of composite laminates [22].

2.1.2 Failure Criteria

There are many failure criteria in the literature. Almost all of them are derived or

modified from the two basic failure theories discussed in the previous section. Some

of the criteria may require single constant while others may require up to 27 strength

constants to analyze failure. The most common and widely used failure criteria are:

Von Mises, Tresca, maximum principal stress/strain, Tsai-Hill, and Tsai-Wu.

I. Von Mises Failure Criterion

This failure criterion uses critical distortion energy to predict the failure of ductile

isotropic materials. This criterion also gives smooth failure surface/envelope. It

is derived from Eq. (2.1) by assuming the tensile and compressive strength of the

material to be equal (YT = YC), and the allowable shear stress Ys = YT/
√
3. By

assuming that hydrostatic pressure does not cause failure, α = β = 0, and γ = 1 in

Eq. (2.1), the failure function of Von Mises criterion can be described as

f =
1

2

[
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2 + 6(σ2
12 + σ2

23 + σ2
13)
]− Y 2 (2.3)

where σij denote multiaxial stresses i, j = 1, 2, 3 and σij=σji, Y is the failure limit of

the material. The most general form of this criterion is also proposed by Hill [23] for

ductile materials based on the directional dependency of yielding of materials.

II. Tresca Failure Criterion

Tresca criterion, also known as the maximum shear stress criterion, is based on the

maximum shear stress in the material: the material fails when the maximum shear
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stress of a material point exceeds the shear strength of the material. The failure

function for the maximum shear stress criterion may be defined by [24]

f = τmax − Y

2
, (2.4)

where τmax is the maximum shear stress, and Y
2
= YS denotes the shear strength or

the failure limit of the material.

III. Maximum Principal Stress/Strain Failure Criteria

The maximum principal stress criterion, usually known as Rankine’s criterion,

postulates that failure begins at a given point where the maximum principal stress

reaches a value equal to the tensile/compressive strength. The failure function can

be expressed as [24]

f =
σmax

YT
− 1 if σmax > 0 or f = |σmax

YC
| − 1 if σmax < 0, (2.5)

where σmax is the maximum principal stress, YT and YC are the tensile and compressive

failure strength of the material, respectively. The maximum principal strain criterion

is the same as the maximum principal stress criterion except the maximum principal

stress is replaced by the maximum principal strain and the corresponding stress-based

strength constant replaced by strain-based strength constant.

For non-isotropic materials, maximum stress or strain in the materials is used to

analyze failure instead of principal stress or strain fields, the stress or strain in each

direction is used to evaluate failure. This approach is commonly named as maximum

stress or strain failure criterion.

IV. Tsai-Hill Failure Criterion

Tsai-Hill failure criterion requires both multiaxial normal and shear failure

strength of the material to predict the failure in the material. For a three-dimensional
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(3D) stress state, the failure function of the Tsai-Hill failure criterion can be expressed

as [23, 25]

f =
√

H(σ11 − σ22)2 + F (σ22 − σ33)2 +G(σ33 − σ11)2 + 2(Lσ2
23 +Mσ2

13 +Nσ2
12)− 1,

(2.6)

where

H =
1

2

(
1

X2
+

1

Y 2
− 1

Z2

)
, F =

1

2

(
1

Y 2
+

1

Z2
− 1

X2

)
, G =

1

2

(
1

Z2
+

1

X2
− 1

Y 2

)
,

(2.7)

2L =
1

R2
, 2M =

1

S2
, 2N =

1

T 2
(2.8)

and X, Y and Z denote normal stress strength in 1, 2 and 3 directions, respectively,

R, S and T denote shear stress strength in 2-3, 1-3 and 1-2 planes, respectively.

V. Tsai-Wu Failure Criterion

Tsai-Wu Failure criterion [26] assumes that the failure function can be expressed

using a scalar form as

f = Fiσi + Fijσiσj = 1, i, j = 1, 2, ..., 6 (2.9)

where Fi and Fij are second and fourth-order strength tensor, respectively. Fij is

symmetric. σi denote the compressed form of second-order stress tensor (σrk for r,

k=1, 2, 3).

Fi =
[
F1 F2 F3 F4 F5 F6

]T
and

Fij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F11 F12 F13 F14 F15 F16

F22 F23 F24 F25 F26

F33 F34 F35 F36

SYMM F44 F45 F46

F55 F56

F66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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In this failure criterion, there are two constraints applied to Eq. (2.9). The first one is

a stability condition which can be expressed for a multiaxial stress state for a general

orthotropic material as

F11F22−F 2
12 ≥ 0, F11F33−F 2

13 ≥ 0, F22F33−F 2
23 ≥ 0. Fij > 0 for i = j

(2.10)

This condition ensures the positive semi-definiteness of the strength tensor to be

consistent with physical condition. The second constraint is inadmissibility of

hydrostatic failure. For this case, let equal magnitude of loads be applied in the

three normal directions, i.e., σ1 = σ2 = σ3 = σ. If failure is inadmissible for a

hydrostatic stress loading condition, then Eq. (2.9) can be equated to α1, for α1 < 1.

This helps to simulate the condition that failure can not occur for the hydrostatic

loading. Consequently, the components of Fi and Fij can be related by

σ(F1 + F2 + F3) + σ2((F11 + F22 + F33) + 2(F12 + F13 + F23)) < α1. (2.11)

The components of strength tensors can be obtained for various loading cases as

discussed in Ref. [26]. These components of strength constants for the unidirectional

loading condition can be expressed as

F1 =
1

X
− 1

X ′ F2 =
1

Y
− 1

Y ′ F3 =
1

Z
− 1

Z ′ (2.12)

F4 =
1

R
− 1

R′ F5 =
1

S
− 1

S ′ F6 =
1

T
− 1

T ′ (2.13)

F11 =
1

XX ′ F22 =
1

Y Y ′ F33 =
1

ZZ ′ (2.14)

F44 =
1

RR′ F55 =
1

SS ′ F66 =
1

TT ′ (2.15)

where X/X ′, Y/Y ′ and Z/Z ′ denote axial tensile/compressive strength in direction

1, 2, 3, respectively, and R/R′, S/S ′ and T/T ′ denote the postive/negative shear

strength of the material in 2–3, 1–3, and 1–2 planes, respectively. If we assume

the shear strength is sign independent, we have F4 = F5 = F6 = 0. The off-diagonal

terms of Fij can be obtained using various combined loading options, for instance,
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for bidirectional tension in direction 1 and 2, let the load in both directions be equal

and assumed to be σ, then F12 can be obtained using Eq. (2.9) as

F12 =
1

2σ2

[
1− σ2(F11 + F22)− σ(F1 + F2)

]
. (2.16)

It is clear to notice that for F1 = F2 = 0, the component of strength constant F12 can

the same for tensile and compressive loading, which may not be necessarily true.

Tsai-Wu failure criterion can also be used to analyze failure in an isotropic

materials by further simplify the failure function and taking certain assumptions.

For instance, using Eq. (2.11), we can also obtain F12 for isotropic material with

equal tensile and compression strength, Fi = 0, i=1,3, and for isotropic material,

the components of strength tensor can be expressed as F11 = F22 = F33, and

F12 = F13 = F23 and also by assuming α1 � 1, equation Eq. (2.11) can be

approximated as

F12 ≈ −F11/2. (2.17)

Similarly, using Eq. (2.17) and the decomposition of shear stress loading into its

equivalent bidirectional normal loadings [26], one can obtain the shear components

of strength tensor as

F44 = F55 = F66 = 2(F11 − F12) = 3F11. (2.18)

Moreover, for an isotropic material with equal tensile and compressive strength, using

Eq. (2.17), F11 = F22 = F33, F12 = F13 = F23, and F44 = F55 = F66, it can be shown

that Tsai-Wu failure criterion, Eq. (2.9), can be reduced to Eq. (2.19)

f = FA((σ11 − σ22)
2 + (σ22 − σ33)

2 + (σ33 − σ11)
2) + FB(τ

2
23 + τ 213 + τ 212)− 1 (2.19)

where FA = F11

2
and FB = F44. Using Eqs. (2.14) and (2.15), FA = F11

2
= 1

2XX′ and

FB = F44 =
1

RR′ , then Eq. (2.19) can be rewritten as

f =
1

2XX ′ ((σ11−σ22)
2+(σ22−σ33)

2+(σ33−σ11)
2)+

1

RR′ (τ
2
23+ τ 213+ τ 212)−1 (2.20)

This shows Tsai-Wu failure criterion in Eq. (2.9) can be rewritten as Eq. (2.20),

which is the same as the Tsai-Hill failure criterion in Eq. (2.6). Thus, Tsai-Wu and
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Tsai-Hill failure criteria yield the same predictions for an isotropic material with

H = F = G = 1
2X2 , L = M = N = 1

2R2 and equal tensile and compressive strength

(XX ′ = X2 and RR′ = R2). It can be noticed that Eq. (2.20) can be reduced to

Eq. (2.3), Von Mises failure criterion, if the shear strength is approximated to be

R = Y√
3
[6]. This shows that both Tsia-Wu and Tsai-Hill failure criteria can produce

same prediction as Von Mises criterion for an isotropic material. Interested readers

may refer to Ref. [26] for more details on Tsai-Wu failure criterion. The predictive

capability of various failure criteria may also be obtained from Refs. [27–29].

VI. Other Failure Criteria

There are various failure criteria which are usually used to analyze composite

laminates. Failure analysis of composite laminates is usually treated by assuming the

constituent that controls the failure of the composite based on the material type and

loading conditions. On this basis, failure analysis can be classified as matrix-controlled

failure criterion and fiber-controlled failure criterion [6, 30–32]. However, it is also

argued that this assumption may not be always valid as failure may be governed by

all contributing factors like fiber, matrix, fiber-matrix interface and loading conditions

[33]. There are also energy based failure criteria that can possibly be used to analyze

failure in composites [34]. Moreover, micro plane theory is also commonly used to

perform failure analysis. This theory assumes an idealized sphere at material point

where the local field is projected on the surface of the sphere as vector projection.

This projection is followed by decomposition of the projected fields into tangential

and normal components on the surface of sphere. The fields further decomposed into

volumetric and deviatoric part. The decomposed fields are then used for evaluating

failure initiation and progression at the corresponding material point. This approach

is also used to evaluate damage in composites [35–37]. Interested reader may refer to

Refs. [29,38] for failure analyses of composite laminates using various failure criteria.
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2.1.3 Limitations of Failure Criteria

In isotropic homogeneous materials, failure can be analyzed using mainly Von

Miss and Tresca criteria. It is usually observed that Von Mise criterion is mainly

employed for ductile material while Tresca is used for brittle material. However,

this classification may not be widely applicable for many other cases and loading

conditions [6]. Consequently, several failure criteria are proposed to predict the failure

strength of homogeneous materials and composite laminates including maximum

principal stress criterion, maximum shear stress criterion, maximum principal strain

criterion, Tsai-Hill criterion, Tsai-Wu criterion, and many others. The first three

criteria are usually used to identify the failure modes in the material but they fail to

capture the stress interactions for multiaxial stress state conditions. While Tsai-Wu

and Tsai-Hill criteria incorporate multiaxial stress interactions but fail to capture the

failure modes of the material.

In Ref. [23], Hill proposed failure criterion based on Von Mises’s isotropic yield

criterion. He generalized the isotropic yield criterion by adding material constants

that denote directional dependency of yielding. Tsai-Hill failure criterion is derived

from Hill criterion. This criterion is not applicable to materials with unequal tensile

and compressive strength (Bauschinger effect). Tsai-Wu criterion [26] is the most

comprehensive failure criterion that uses tensorial strength constants. The strength

constant tensor has the advantage of rotational invariance, symmetric properties and

it is also governed by tensor transformation laws. Tsai-Wu and Tsai-Hill failure

criteria are usually used for analyzing failure in composite laminates. However, these

criteria have certain limitations. For instance, the strength constants obtained under

biaxial tensile loading are not uniquely and accurately obtained as pointed out by

Hashin [32]. The number of strength constants required to analyze failure in the

material is large particularly for Tsai-Wu criterion which requires 27 constants for a

general anisotropic material. In Tsai-Wu criterion, it is usually assumed that shear

loading is sign independent for composite laminates. This assumption is not consistent
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with experimental observation of composite laminates under in-plane shear loading

condition. For the detailed review of the limitations of these and other failure criteria,

interested readers may refer to Ref. [25].

If these failure criteria can be applied at material points, some of their limitations

can be easily resolved. For instance, if Tsai-Wu and Tsai-Hill failure criteria are

applied at a material point, the number of strength constants required to analyze

failure at lamina level are reduced at least for isotopic constituents and also the

constants can be reasonably obtained. The approaches can be easily applicable for

local multiaxial stress state which may give more reasonable estimates of failure

strength of heterogeneous materials. By evaluating failure at a material point, it

is also possible to disregard unnecessary assumptions made for composite laminate

failure analysis such as sign independency of in-plane shear loading and failure modes

for composite laminates under various loading conditions.

2.2 Failure Analysis Approaches in Heterogeneous Materials

In heterogeneous materials, failure is a multi-scale complex phenomenon which

results from the interactions among various contributing factors such as the properties

of the matrix, the fiber, the matrix-fiber interface, and the fiber volume fraction, and

the loading conditions [39–41]. There are also numerous modes of failure in the

heterogeneous materials including fiber fracture under tensile load, microstability

(kinking) and shearing due to compressive load, matrix cracking, matrix ductile

failure (without cracking), interfacial debonding, delamination and others [42]. It is

extremely difficult to capture all these failure modes using any given failure criterion

under various loading condition. Thus, it is critical to pay due attention to the

local fields which play a vital role for the initiation and progression of failure in

the material. The failure of heterogeneous materials is usually modeled using both

macromechanical and micromechanical approaches.
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2.2.1 Macromechanical Approach

In the macromechanical approach [43–45], failure analyses are performed based on

the averaged/smeared properties of the heterogeneous materials. This approach fails

to consider the local field disturbance in each constituent of heterogeneous materials.

This can potentially affect the predictions of failure strength of the heterogeneous

materials. Numerous researchers proposed various failure analysis approaches to treat

initial and final failure/fracture of continuous fiber-reinforced composite. More than

19 failure criteria are analyzed in [2,3,46,47]. It is noticed that all authors employed

different assumptions and criteria for the fiber and the matrix. The majority of

them used the homogenized lamina properties for predicting failure in the composite

laminates. However, in some cases, the failure is analyzed by fictitiously assuming

both fiber and matrix in a homogenized medium. Accordingly, both fiber and matrix

failure criteria are employed depending on the loading conditions. Most of the

approaches used classical lamination theory (CLT) to recover the stress/strain fields

to analyze failure in the composite laminates, but CLT may not be rigourous enough

to capture all fields, in particular, transverse shear and normal stress that play a

significant role for delamination of composite laminates. Both linear and nonlinear

analyses were suggested in many of these approaches to analyze initial and final

failure of materials. Some of the models predicted final failure without analyzing

the progressive damage in the material while others assumed constant or exponential

stiffness degradation models.

It is also shown that the predictive capabilities of various proposed failure

theories are not able to sufficiently and consistently estimate the failure strength

of fiber-reinforced composites for different loading conditions as reported in the

references. The main reason for inconsistent predictions of the proposed failure

analysis approaches may be due to lack of using accurate local fields that significantly

affect the failure of the composite. The assumptions made in formulating the failure

approaches are also contributing for the ineffective analysis of failure in composite
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laminates [1].

Moreover, all the proposed failure analysis approaches used for continuous

fiber-reinforced composites are not applicable for other types of heterogeneous

materials such as particle-reinforced composites, discontinuous fiber-reinforced

composites and woven composites. This is because the assumptions are made to adopt

the criteria only to continuous fiber-reinforced composites, although the predictions

are still not good enough. If the failure approaches are developed based on the

constituents of the heterogeneous material, particularly at a material point, the

models may be reasonably used for other types of heterogeneous materials.

2.2.2 Micromechanical Approach

In a micromechanical approach, failure can be analyzed based on the constituents

of the heterogeneous material. As discussed in Ref. [48], if failure happens locally,

the load of a damaged part transfers to an undamaged part of the constituents.

This process results in local and global load sharing through stress field. At a micro

scale, failure can be analyzed using the local stress in the constituents and the local

interfacial stresses or any combination of these. The local interactions determine the

dominating factors that control the failure strength and behavior of the material.

For example, the failure strength of silicon-carbide-fiber/titanium-matrix (SiC/T)

composite is governed by the fiber volume fractions. For fiber volume fraction greater

than 20%, the fiber mainly controls the failure of the composite otherwise the matrix

governs the failure of SiC/T [49]. Dvorak and his co-workers [50] demonstrated that,

for transversely loaded composites, matrix properties will mainly govern yielding

conditions whereas for longitudinally loaded composites, the ratio of the Young’s

moduli of the constituents controls the failure of the composite. Hence, it is of

great importance to critically investigate initial and final failure of the heterogeneous

materials at a micro scale level. In a micromechanics approach, failure can be analyzed
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using the local fields at three different levels: phase averaged, averaged subcell and

pointwise fields (material points).

I. Phase Averaged Fields

In phase averaged based analysis, failure is estimated based on the average field

in each constituent [51–54]. As discussed in WWFE [2, 3], various failure models

such as Chamis, Puck, Hart-Smith and others used micromechanics approach to

estimate failure strength of composite laminates. Chamis [55] uses homogenized

properties however there is a stress concentration factor that is considered for the

stress disturbance around a circular hole. Puck [30, 31] adopts phenomenological

failure analysis approach. In this work, different failure modes are assumed based

on the loading conditions. The failure of the composite was evaluated based on

the average fields in the fiber and matrix for longitudinal and transverse loading

conditions, respectively. Similarly, Hart-Smith [42] also used the averaged field in

each constituent to evaluate failure.

Phase averaged based failure analysis approach may reasonably predict failure

strength of a heterogeneous material compared to macromechanical approach.

However, it is clear to notice that this approach cannot capture the effect of local

field disturbance in a heterogeneous material. Thus, failure analysis, using phase

averaged field, might considerably overestimate the overall strength of the material.

II. Averaged Subcell Fields

This approach uses the averaged local fields in each subcell to analyze the failure

in a heterogeneous material. In Refs. [27, 56, 57], the method of cells (MOC) is

employed to predict the failure strength, the initial and subsequent yield surfaces

of continuous fiber-reinforced composite. Bednarcky and Arnold [49] also used the

generalized method of cells (GMC) to predict the failure of viscoelastic material using

the Curtin fiber breakage model and evolving complaint interfacial (ECI) model.
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MOC and GMC can better predict the failure strength of composite based on the

local fields. However, in MOC and GMC, the local stresses and strains are estimated

by averaging local stresses and strains over each subcell, and moreover they inherently

lack axial-shear coupling effect, i.e, only the normal local stresses and strains are

fairly approximated. These factors can make these methods to insufficiently recover

the local stress field in the constituents of heterogeneous materials for various loading

conditions [4,5]. Consequently, MOC and GMCmight inadequately predict the failure

strength of heterogeneous materials.

III. Pointwise Fields

In this case, failure is analyzed using a material point or a pointwise numerical

integration point. Scida and his co-workers [58] analyzed failure in a woven composite

using a pointwise lamination approach. This approach adopts the classical lamination

theory to recover the local stresses in the woven composite. This method cannot

provide a good approximation for the local fields which in turn affects the prediction of

failure. Choi and Tamma [59] used FEA to analyze the damage initiation in a woven

composite using stiffness degradation approach for the normal and shear loading

conditions. FEA is also used to analyze failure at each numerical integration point for

approximating failure strength of fiber-reinforced composite [60, 61]. This approach

can be reasonable for critically analyzing failure at constituent level. However, it may

underestimate the failure strength of composite when defects exist in the material.

These defects may be stress singularity risers such cracks and small holes. The

presence of the defects may significantly affect the accurate predictions of failure

strength of the composite. Moreover, the predictions of this approach are highly mesh

dependent. However, if this approach is employed with the nonlocal approach that is

weighted averaged field in the neighborhood of a critical point. The pointwise failure

analysis can better predict failure strength of heterogeneous materials independent of

mesh and at the presence of various forms of defects.
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2.3 Benchmarking Study for Failure Analysis

With the increasing of the number of failure analysis approaches and tools

available, the practitioner must determine which tool(s) provides the most reasonable

predictions for strength related problems based on their budget, time and resource

constraints. To data, two main benchmarking examples were performed to assess the

technical feasibility of the state of the art of the failure analysis approaches in the

composite laminates. These are: worldwide failure exercises (WWFE) and progressive

damage analysis performed by Air Force Research Laboratory (AFRL).

In WWFE, 19 failure criteria were used to estimate the failure strength and

stress-strain curve of composite laminates. Each approach has its own unique

assumptions in terms of analyzing the initiation and progression of damage, despite

a strong similarity with regard to the scale at which failure is evaluated. Some of

failure criteria did not account for the progression of damage in the material. A Few

representative failure criteria are briefly described here. Interested readers can refer

to Ref. [62] for more.

The Eckold criterion basically used the maximum stress or strain failure criteria

along with failure mode of the composite laminates. The criterion is developed based

on some practical considerations, i.e., composite structural test. The approach does

not consider post failure analysis, i.e., damage propagation. In this approach, failure

occurs when

σ22 = YT for σ22 > 0 and

σ22 = YC for σ22 < 0
(2.21)

ε22 = ε22T for ε22 > 0 and

ε22 = ε22C for ε22 < 0
(2.22)

where ε22T and ε22C denote the failure strain.

Hart-Smith failure criterion is similar to the Eckold except that Eckold works

better for for strain (ε22 ≤ 0.001). Both Eckold and Hart-Smith do not account for

degradation after initial failure.
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Puck failure criterion was developed primarily for analyzing continuous

fiber-reinforced composites. This theory is formulated based on the physical mode

of deformation that captures the phenomenon of failure. In this theory, various

modes of failure of the composite laminates are considered by introducing physically

independent failure criterion for different modes of failure. In this approach, two

independent failure criteria, one for fiber failure and the other for matrix named as

inter fiber failure, are evaluated at the same time at the same point. Following the

result of the evaluations, the initiation of failure for a specified mode of failure will

be identified.

In this approach, it is assumed that fiber is in combined state of stress. It is also

implicitly assumed that the fiber carries the load for unidirectional composite loaded

in longitudinal direction. Thus, for example, for composite lamina, the stress in the

unidirectional composite loaded in longitudinal direction is assumed to equal to the

stress in the fiber. On this basis, the failure can be initiated when the stress in the

fiber reaches critical limit and this can be expressed as

σf11 = XfT for σf11 > 0 and

σf11 = XfC for σf11 < 0 and
(2.23)

where XfT and XfC denote the tensile and compressive strengths of the fiber. For a

linear elastic material, one can write the tensile/compressive strengths of composite

laminate as

XfT = XT

E1
Ef1 = εT11Ef1 and

XfC = XC

E1
Ef1 = εC11Ef1

(2.24)

where E1 and Ef1 denote longitudinal elastic moduli of composite and the fiber,

respectively,XT andXC denote tensile and compressive strengths of the unidirectional

composite composite. For loading conditions of σ11 = 0 and σ22 > 0, the effect of this

type of loading on the fiber can be obtained by applying elasticity equation εf = Sfσ

along with a factor that helps to approximate the transverse stress in the fiber using
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the transverse stress in the composite σ22. The total strain in the fiber can then be

quantified as

εf11 =
σf11

Ef1

− νf12
Ef1

mσfσ22 for σf11 > 0 (2.25)

where νf12 denotes Poisson’s ratio of the fiber, mσf denotes stress magnification effect

caused by the different moduli of fibers and matrix in direction 2. It is also suggested

that for carbon fiber and glass fiber, mσf = 1.1, and mσf = 1.3, respectively. For

perfectly bonded interface between the fiber and the matrix, the strain in the fiber is

assumed to be the strain the composite, i.e., εf11 = ε11. Then, one can use Eq. (2.25)

to find the stress in the fiber as

σf11 = ε11Ef1 + νf12mσfσ22 (2.26)

This indicates that when the stress level in the composite, σ11, exceeds the stress

level in the fiber, σf11, the failure of the composite initiates for unidirectional lamina

loaded in longitudinal direction. Under combined loading conditions (σf11, σf22) of

the fiber, one can use Eq. (2.25), εf11 = ε11, and maximum strain criterion to obtain

the conditions for the failure of the fiber as

1
εT11

(
ε11 +

νf12
Ef1

mσfσ22

)
= 1 for (...) > 1

1
εC11

(
ε11 +

νf12
Ef1

mσfσ22

)
= 1 for (...) < 1

(2.27)

The failure for other combination of loading conditions and modes of failure including

transverse matrix cracking can be obtained from Ref. [62]. This failure criterion

uses the global or macromechanical stress/strain fields, except mσf factor that is

assumed to account for the stress increase in the fiber. But this factor is not enough

to sufficiently capture the stresses in the fiber. Thus the result may not be good

enough for all loading conditions at least due to the inaccurate stresses used for the

evaluation of failure. Puck failure criterion accounts for degradation of stiffness by

using degradation factor which varies with stress.
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Chamis and Edge have similar criteria but the stress field used of the model is

different. For examples, the combined transverse tension and shear that trigger the

initiation of failure in matrix can be evaluated using(σ22

Y

)2
+

(
τ12
S12

)2

= 1 (2.28)

Chamis uses Y and S12 of the constituents using micromechanical analysis while Edge

uses the lamina strength for both paramters.

Other failure criteria can be discussed but it is not found to be necessary. A brief

survey of all the failure criteria can be obtained from Ref. [62]. In general, almost all

the failure criteria used in the WWFE adopt global fields for failure analysis, which

may not be accurate enough to capture the initiation and progression of damage. The

results obtained from this benchmarking study showed that the failure strengths are

not consistently well predicted using a given failure criteria except that one criterion

shows better for one case and may be bad for the other cases. This can be possibly

solved using a micromechanics approach, which the local fields for each material point

and each constituent can be used to analyze the initiation and progression of failure.

The other benchmarking work was performed by Air Force Research Laboratory

(AFRL). AFRL performed a benchmarking study on the progressive and fatigue

failure of composite laminates. In the AFRL report, the predictions of various tools

are incorporated and validated with experimental data. In this work, first, blind

predictions of static failure/failure strength of the composite and fatigue life were

performed. Second, the test data were provided to refine material constants, and then

run the test cases again [63] to further investigate the performance of the approaches.

The main goal is to study the technical feasibility of the state of the art of damage

analysis models and approaches that can provide a reasonable prediction of damage in

composite laminate. This work was intended to be applied for analyzing composite

structure, F-16 unitized horizontal tail strcurctres, using damage tolerant design.

In the evaluation study, various tool providers and users are participated. These

are: Autodesk’s ASCA, AlphaSTAR’s GENOA, Multiscale design system’s MDS-C,

and NASA Glenn’s MAC/GMC, University of Michigan’s enhanced Schapery theory
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(EST) and N-phase cylinder (NCYL), University of Dayton Research Institute’s

BSAM software, Global Engineering and Materials, Inc’s X-FEM software (DCN),

Vanderbilt Universitys reduced-order space-time homogization software usually called

eigen deformation-based reduced order homogenization method (EHM).

All the tools uses different approaches to analyze damage in composite laminates.

For example, MDS-C is a multiscale approach. It uses micromechanics approach

to analyze failure of composite laminates. In this approach, first, the composite

laminates are modeled using lamina properties. Each material point is linked to the

smaller scale, i.e., fiber and matrix with a given fiber volume fractions. During each

loading step, the global field at each material point is transferred to microscale to

analyze the initiation of failure using a unit cell or representative volume element

(RVE) analysis. MSD-C uses a fourth order damage tensor with all the off diagonal

terms are equal to zero. The growth of damage is assumed to take a linear form. The

failure initiation is evaluated based on the local averaged strain in each constituents.

The damage is evaluated locally based on the principal strain direction.

GMC is also in cooperated with FEA analysis, called as FEA MAC, to perform

damage analysis in composite laminates. In this approach, the nonlinear response

of the matrix is captured using J2 plasticity. While the fiber remains to be elastic

until failure, i.e., no plasticity in the fiber. The initiation of failure in the matrix

is evaluated using maximum strain failure criterion. In this case also, failure is

performed using a multiscale approach. Composite laminates are modeled using a

lamina properties. Each material point is linked to a microscale RVE where the

initiation of failure is analyzed at each subcell. For fiber, the maximum strain criterion

was used to evaluate failure at each subcell. Once the failure criterion is met, and

the longitudinal elastic modulus of subcell that corresponds to the fiber is eliminated.

While for matrix, plasticity will be in place for further analyses.

NCYCL [64] is a micromechanics based model to compute nonlinear responses

of unidirectional composites. In this approach, the RVE is modeled using a fiber

matrix concentric cylinder as a basic repeating unit. The composite laminates are
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generated using homogenized properties. The micromechanics is used to link the

applied composite global strain to the fiber and matrix strains using a six by six

transformation matrix. The micro damage in the matrix is captured as a nonlinear

stress verse strain response. The nonlinearity of the matrix is modeled using a

modified J2 theory of plasticity. In composite laminate analysis, each point is

represented by a subscale or microscale. The microscale is modeled assuming a fiber

matrix concentric cylinder. The analysis at microscale is performed using a closed

form solution. The average local fields in each constituent are then used to analyze

the initiation and progression of failure.

Schapery Theory (ST) is developed based on principles of thermodynamics, where

the work potential theory on the basis of thermodynamics are employed to model

micro cracking in the matrix. The mode of failure is assumed during this analysis.

Fiber breaks as mode of failure I and matrix cracks as mode of failure II. The

initiation of failure is evaluated using Hashin-Roten criterion. EST also analyzes the

softening of materials using a crack band model with the linear traction-displacement

law. The damage constants for the analysis are obtained from +/-45 laminate.

In Global Engineering and Materials X-FEM software (DCN), failure is analyzed

using three different approaches. These are: continuum damage mechanics approach

along with nonlocal approach, discrete damage approach performed by introducing

a finite crack at the material point where failure is initiated, and fiber aligned mesh

approach where fiber orientation dependent matrix cracking is analyzed. In all of

the three cases, failure is initiated when the local field reach a critical limit. While

progression of failure is assumed to be driven using local energy release due to damage

or fracture. During the analysis, if failure is initiated in a given ply, a finite crack is

inserted along fiber directions for the three approaches. The differences between the

three approaches are the critical for initiation and growth of the cracks.

BSAM essentially analyzes failure by introduction of true displacement

discontinuities which is independent of mesh orientation. The failure between the plies

are analyze using cohesive model. Failure analysis in this model will require to perform
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thermomechanical analysis for estimating residual stress in the composite laminates.

Following the thermomechanical analysis, a pre-stressed composite laminates will be

subjected to incremental loading to validate the strength of the laminates. During

this analysis, if failure criterion is met in the matrix, a finite crack is introduced. The

process continues as the introduced crack keeps on increasing its length until the full

domain breaks.

EHM uses a computational homogenization theory that adopts multiple length

scales. This approach uses transformation field analysis (localization operators)

to quantify the microstructural responses. As this approach is computationally

prohibitive, a reduced order model is adopted by diving the model into few number

of parts using a coarse mesh. This assumption will provide a smaller system of

equations over a given domain. The progression of damage was analyzed by using

isotropic damage. The damage potential is defined using trigonometric function.

MSD-C, GMC and NCYCL approaches use multiscale approach by linking the

local to global. These approaches are good to perform failure analysis, but the use of

average field at microscale cannot yield reasonable predictions particularly for MSD-C

and NCYCL. For GMC, average subcell field may not able to provide a good estimate

of the local fields due to lack of axial shear coupling and also type of discretization

of RVE, i.e., subcells (cuboidal subcells). EHM can provide reasonable estimate but

the local fields may not be well captured due to the coarse mesh. EST, DCN and

BSAM used lamina properties to model and analyze failure. This approach cannot

reasonable estimate local field to investigate the initiation and progression of failure.

The results of this analysis indicated that, for blind predictions, the average

static strength was approximated within 20% of the test data. The predictions were

improved to 10% after calibrating material constants with the test data. For fatigue

case, the average blind predictions were found to be within 40% of the test data. This

was improved to be within 20% after calibration. These results can potentially be

improved if the a pointwise micromechanics approach is used to analyze the problem.



www.manaraa.com

26

2.4 Interface Analysis

The failure strength of heterogeneous materials is highly influenced by the

conditions of the interface among their constituents [49]. Numerous efforts have

been devoted to develop constitutive models that adequately capture the effect

of imperfect interface on the effective properties and the failure strength of these

materials. The most common interfacial model is linear interface model, where the

interfacial traction is proportional to the displacement jumps across the interface

[65]. This hypothesis is adopted by numerous researchers to formulate the imperfect

interface using continuum model [49, 66]. Interfacial analysis is also performed by

adopting different assumptions including stress and displacement gradients jumps

across the interface [67]. The interfacial analysis is commonly used to analyze the

interfacial jumps in grain boundary. The jump in a grain boundary can be analyzed

using displacement gradient jump, where both displacement and traction across the

interface remain to be continuous. The jump is assumed to be negligible for purely

elastic conditions. The effect of the jump is accounted when the material is under

plastic deformation. A brief review of this approach can be obtained from Refs.

[68, 69].

Needleman [70–72] proposed a cohesive zone model that exponentially relates

interfacial traction with displacement jump across the interface. The normal traction

increases with displacement jump, reaches maximum, and then finally drops to

vanish at the complete debonding of the interface. In these works, it has also

been demonstrated that the tangential traction shows a periodic function with

displacement jump along the interface plane. These models do not explicitly indicate

a finite traction value that initiates the debonding in the fiber-matrix interface.

Lissenden [73] proposed a three dimensional (3D) polynomial traction-displacement

model. This model incorporates the effect of friction between the debonded fiber and

matrix in the interface.
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It is also demonstrated that imperfect interface significantly affects the effective

properties of heterogeneous materials [74,75]. Hashin [76] used a thin elastic interface,

as an imperfect fiber-matrix interface, to obtain the effective properties of the

particle-reinforced composite using a variational approach. The variational approach

can better predict the upper and lower bounds of elastic effective properties with

imperfect interface [67, 77]. However, the predicted bounds may be too wide for

practical use. Moreover, this method can not rigorously obtain the local fields in the

heterogeneous materials with complex microstructure. Thus, the effect of imperfect

interface may not be sufficiently captured.

Andrianova and co-workers [78] analyzed interfacial debonding of continuous

fiber-reinforced composites under the axial shear loading condition. In this work,

a thin elastic bond with finite volume and rigidity is introduced between the fiber

and the matrix, and the asymptotic limit for the ratio of the rigidity and volume

is used for the prediction of the interfacial debonding using a linear interfacial

model. Liu and Sun [79] analyzed the effect of imperfect fiber-matrix interface in

a particle-reinforced composite by adopting the Eshelby’s micromechanical approach.

This approach cannot effectively capture the local stress fields in the composite either.

Thus, the prediction may not be performed adequately. Tvergaard [80] used a linear

model to analyze the imperfect interface and whiskers breakage in the discontinuous

fiber-reinforced composite using cell-model analysis approach. Aboudi [66] and

Lissenden [73] used MOC to analyzing the effect of imperfect interface by adopting the

linear model and polynomial traction displacement model, respectively. The MOC

may not sufficiently recover the local fields which mainly affect the debonding of the

interface.

In Refs. [20, 49], GMC is employed to predict the interfacial debonding in

the continuous fiber-reinforced composite under transverse loading condition. In

these works, various traction displacement models such as flexible interfacial model,

evolving interfacial model, statistical interfacial model and Needleman cohesive zone

model are incorporated in GMC to predict interfacial decohesion in the composite.
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GMC can better predict the interfacial debonding. However, this method may not

sufficiently approximate the local stress field due to axial-shear coupling problem

and also the local stresses are obtained by averaging over each subcell. Hence, the

approach might inadequately predict the interfacial debonding in the heterogeneous

material.

In Refs. [81–83], FEA is used to analyze the effect of imperfect fiber-matrix

interface and fiber breakage of various composites by adopting linear traction

displacement model. This approach can give a reasonable predictions for the

interfacial debonding and also the failure strength. This is because in the FEA,

the local fields can be rigorously predicted in the heterogeneous materials. This,

in turn, helps to predict the effect of imperfect interface. However, in the FEA,

interpenetration of interface element due to applied global load are found to be one

of the major problems [82].

2.5 Types of Failure in Heterogeneous Materials

The failure analysis may be categorized in different ways but for the current study

failure may be classified in three main types: initial failure, progressive failure, and

fatigue failure.

2.5.1 Initial failure

Initial failure indicates the inception of failure for ductile materials, but for brittle

materials the initial failure may also represent the final failure due to sudden fracture

of the material immediately after the inception of the initial failure. This assumption

is used in various failure analysis models [2, 60].
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2.5.2 Progressive failure

In progressive failure, a material undergoes a gradual deterioration which results

in final fracture. The progressive failure of a composite laminate can be characterized

by: (i) initiation, (ii) growth/accumulation, (iii) stable or slow propagation of

damage (up to a critical amount), and (iv) unstable or very rapid propagation [6].

Thus, failure is not usually one time process particularly in ductile materials. These

processes of failure can be simulated using various models [2, 3, 84, 85]. In brittle

materials, the process of gradual degradation is highly localized and may be assumed

to be negligible.

Various forms of degradation models have been proposed and widely used to

analyze the progressive failure of heterogeneous materials at different levels. Some

models assume the matrix property to vanish at the end of initial failure while others

degrade the matrix properties exponentially or with fixed constant values. These

models introduce various constants that help to predict the stiffness reduction of the

constituents of heterogeneous materials. The constants are commonly obtained by

curve fitting with experiment data. In Ref. [86], the progressive damage of a lamina

is analyzed by assuming cracking as the mode of failure for matrix and interface,

and brittle fracture for fiber. The delamination of a composite laminate can also be

simulated using damage analysis approach by adopting a linear traction-displacement

model [87]. Various types of failure criteria including Hashin and strain-invariant

approaches are commonly used in progressive damage analysis. The failure criteria are

used for intimation of failure followed by the different damage evolution approaches to

account for progressive damage in the fiber, the matrix and the interfaces [?, 88–91].

The average local field in each constituent of heterogeneous material may not provide

a good estimate of local field that help analyze failure in various loading conditions.

Moreover, the damage in the progressive failure can be systematically captured

and quantified using a consistent irreversible thermodynamic approach called
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continuum damage mechanics (CDM) [13]. The damage propagation is estimated

using isotropic or anisotropic damage variables.

2.5.3 Fatigue Failure

The evolution of permanent damage under cyclic loading can be studied using

fatigue analysis. Wöhler [92] is a pioneer in conducting a systematic experimental

investigation of fatigue failure. He experimentally illustrated the fatigue behaviour of

materials using the stress-life (S-N) curve and endurance limit, i.e., the stress limit

under which the material does not experience failure for an infinite number of cyclic

load. In fatigue analysis, there may be two forms of failure: brittle failure when

the material fail without significant plastic strain usually called high cycle fatigue

(HCF) and ductile failure when the material undergoes excessive plastic strain before

final failure usually described as low cycle fatigue (LCF). The fatigue life of materials

is commonly presented in the stress-life (S-N) or strain-life (ε-N) curves based on

a specified cyclic load. The experimental analysis of fatigue life is expensive, time

consuming and it is also very difficult to run for complex and large components.

Consequently, various approaches have been proposed and widely used to characterize

the fatigue behaviour of various materials. These approaches can be classified as: total

life approach and fracture mechanics. As the name indicates, the total life approach

estimates the fatigue life of a material that includes the initiation, growth and final

fracture of the material under cyclic loading, whereas fracture mechanics approach is

commonly used to estimate fatigue life based on the crack growth rate. It requires

initial macroscopic crack with finite length and its location to perform the analysis.

This approach can not estimate the number of cyclic load up to the initiation of finite

crack length.

The total life approach can be classified in two basic approaches: stress-life and

strain-life approaches. Stress-life approach adopts stress loading mainly applicable for

low stress amplitude dominated with elastic strain. The well-known Basquin’s rule is
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used to analyze the fatigue life for constant amplitude. This model includes the effect

of mean stress on fatigue life. There are also various mean stress models including

Goodman, Gerber, Soderberg and Morrow models widely used in fatigue life analysis

[93]. Strain-life approach is mainly used for high strain amplitude dominated with

plastic strain. Strain-life approach such as Manson-Halford, Smith-Watson-Topper

are widely adopted for fatigue life analysis particularly for ductile materials. Both

mean stress and strain models do not take into account the local material degradation

and variable amplitude loading. The effect of variable amplitude may be analyzed

using the Miner’s rule that assumes linear accumulation of damage but it does not

account for different load sequences [92].

Recently, a new energy based fatigue life analysis is proposed to analyze fatigue

life based on both elastic and plastic energy in the material. This approach correlates

the energy in the material with fatigue life [94, 95]. Interested reader may refer to

Refs. [96, 97] for various similar fatigue models.

Continuum damage mechanics (CDM) is a typical phenomenological method that

is extensively used in damage and fatigue life analysis of both homogeneous and

heterogeneous materials [12, 14–16]. This approach uses the residual stiffness to

predict the fatigue damage both in ductile and brittle materials.

A great deal of efforts have been devoted to analyze fatigue failure in homogeneous

materials. However, the direct use of this approach to heterogeneous materials

may not lead to reasonable predictions due to significant stress variations in

the heterogeneous materials. Fatigue damage and life prediction analyses of

heterogeneous materials can be performed using both macromechanical [98–103] and

micromechanical [104, 105] approaches. Fatigue failure leads to sudden fracture of

the material before inducing large elastic strain specifically for brittle material. The

material fails to due to the applied load before the average stress or strain in each

constituent reach a failure limit, particularly, for the safe life design criterion. Thus,

both macromechanical and phase averaged micromechanical approaches may not
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rigorously predict the fatigue damage in brittle material. The effect of fatigue damage

can be better captured by the pointwise approach.

A. Fatigue Failure in Ductile Materials

Ductile materials are usually characterized by undergoing excessive plastic

deformation [9,10]. Accordingly, various models have been proposed to analyze ductile

damage in the heterogeneous materials using CDM. Voyiadjis and Deliktas [106]

proposed anisotropic damage model for inelastic response of heterogeneous materials

for both rate-independent and rate-dependent constituents. Maire and Chaboche

[107] analyzed ductile damage in composite laminates with a local micro closure

effect. Fish and his coworkers [108] estimated fatigue life of heterogeneuous materials

using mathematical homogenization approach. This analysis is performed using CDM

by adopting nonlocal isotropic damage parameter. Chaboche and his coworkers

[109] also examined damage propagation in plastically deformed composites using

micromechanical approaches including the Mori-Tanaka method, and the Eshelby

method.

According to Ref. [33], it is experimentally observed that both fiber and matrix

can experience a ductile failure for any loading direction. It is also further noticed that

fiber, matrix and interface independently or all together determine the failure of the

composite laminate based on the stress level in the composite. In Refs. [16,110–114],

CDM is adopted to analyze fatigue of ductile materials for various loading conditions.

B. Fatigue Failure in Brittle Materials

In CDM, it is commonly postulated that failure in brittle materials is dominated

with dissipative mechanisms where viscous, thermal or other non-mechanical

effects are not taken into account and moreover the plastic strain is assumed to

be negligible compared with the elastic strain. These assumptions lead to elastic

damage analysis for predicting fatigue damage and fatigue life prediction of brittle
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materials with isotropic or anisotropic damage parameters [115–117]. On the other

hand, it is hypothesized that brittle material undergoes the process of nucleation,

void formation and coalescence at micro scale, which implies that the material

yields plastic strain locally while the majority of the part remains elastic. On this

basis, Lemaitre [118] proposed a two-scaled approach assuming that brittle materials

experience a localized plastic strain. The local stress and strain fields approximated

using Eshelby-Kröner localization law. Desmorat and his coworkers [119] extended

the two-scaled approach for complex thermomechanical loading conditions. Doudard

and his coworkers also analyzed the fatigue life of homogeneous materials using the

two-scaled based probabilistic approach [120]. For detailed numerical implementation

of the two-scaled approach, interested readers may refer to Ref. [121].

2.6 Residual Stiffness and Strength

In a cyclic loading, the gradual deterioration of constituents of heterogeneous

materials gives rise to loss of both effective properties and strength of the materials.

The residual stiffness is experimentally obtained by applying small static load after

a certain specified number of cyclic load. The applied load and the displacement of

the test coupon will be then used to predict the effective properties of the material.

But for residual strength, the applied static load increases unit final failure [122].

The final load at which failure occurs is taken to be the residual strength of the

material. It is also reasonable to assume that fatigue failure can occur when the

maximum applied stress/strain is equivalent to the residual strength of the material.

Both residual stiffness and strength are modeled using various deterministic and

probabilistic approaches [123–125]. All of these models require accurate identification

of different constants which may not be easily quantified.
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2.7 Basics of Continuum Damage Mechanics (CDM)

The accurate representations of microscopic properties of a material enhance

better descriptions of the macroscopic response of the material. Kachanov [126]

introduced the damage variable that relates the extent of micro defects in a material

to macroscopic response of the material during modeling of creep rupture. In this

hypothesis, the effective cross sectional area, or loading carrying capacity, decreases

as the load applied increases. If a given material is loaded, it undergoes both

reversible and irreversible change internally. The irreversible part of the change

signifies the damage in the material. These changes are mathematically described

using damage variable that can be casted as a scalar, vector and tensor. A consistent

thermodynamic framework is employed to represent the process of damage initiation,

progression, and their corresponding damage variable in the form of a scalar, vector,

and tensor [11–13]. The damage variable is incorporated in various constitutive

equations to simulate the effect of damage in the macroscopic response of various

materials. The damage variable represents the effects of distributed cavities and

microdefects in the material. This concept gave rise to the concept of CDM. CDM

provides a systematic approach to describing the mechanical behavior of damaged

materials in a unified fashion with the concept of stiffness degradation.

2.7.1 Damage Variable

Zeroth-Order Tensor: Scalar Damage Variable

The distributions of defects in the materials, in a simplified way, can be assumed to

be uniform. If these defects can have an equal effect on the materials in all directions,

then the damage variable can be represented using a scalar value based on the level

of damage, and it is usually expressed as an isotropic damage. This assumption is

adopted for many applications where characterization of damage in all directions may

be easily quantified. However, it is also argued that damage in isotropic materials
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can require more than one parameter to fully describe the properties of damaged

materials [127, 128]. The scalar representation of damage has limited applications as

in many cases the effect of loading in one direction can possibly have different effects

on different directions.

First-Order Tensor: Vector Damage Variable

In this case, the damage in a material is represented in a vector form. This looks

more reasonable to assume different damage values in different directions particularly

based on loading. As the area reduction hypothesis assumes, the effective area

carrying the load varies depending on the damage. This approach signifies the

anisotropy of the damage but limited to vector representations.

Higher-Order Tensor Damage Variable

Using higher-order tensors, damage variable can be represented using second-order

and higher-order tensors. In this case, the magnitude of damage is different in all

directions based on the type of loading and material properties. Thus the damage

can be described using fully populated tensors. But it is very difficult to obtain all

components of a fully populated damage tensor.

2.7.2 Hypothesis of Mechanical Equivalence

The degradation of material properties can be described using effective stress in

a material. The effective stress is the stress obtained using a net undamaged part

of the damage material. This can obtained using damage variable and mechanical

equivalence between the damaged and undamaged part of the materials. This can be

mathematically stated as

σ̃ = f(D)σ (2.29)



www.manaraa.com

36

where σ̃ denotes effective stress, and f(D) denotes the damage effect tensor, and

D denote damage in the material which can be described using a scalar, vector or

tensor. There are different forms of damage effect tensors. Interested readers can

refer to Ref. [129].

With the hypothesis of mechanical equivalence between the damaged and

undamaged material, the mechanical behavior of a damaged material is commonly

obtained by using the concept of effective stress. Figure 2.1 shows the two

representations, the first one (a) is a damaged material where mechanical properties

can potentially be expressed using actual fields (stress σ, strain ε) and the damaged

compliance tensor S(D) and damage variable D, and the second one (b) represents

a fictitiously undamaged material with compliance tensor So, which assumes damage

free material but the effect of damage is accounted within the effective stress.

Figure 2.1. Schematic representation of strain equivalence hypothesis

The two representations are usually used to assume various hypotheses to obtain

their idealized equivalency. The equivalency can be formulated based on any field

and/or quantity that help to create strong relation between the two representations.
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Hypothesis of Strain Equivalence

In this case, the constitutive equation of undamaged part may be expressed as

a function of effective stress and damage parameters as shown in Eq. (2.30). It is

hypothesized that both damaged and a fictitiously undamaged material experience

the same strain

ε = F0(σ̃, α) = F (σ,D, α) (2.30)

where σ denotes stress in damaged material, D denotes damage in the material, α

denotes damage strengthen parameter. This approach produces asymmetric stiffness

matrix that may not satisfy the requirements. The asymmetricity of stiffness matrix

can be resolved by applying various approaches of symmetrization of asymmetric

matrix [129].

Hypothesis of Energy Equivalence

For this case, both strain energy and complementary energy are commonly used

to create equivalence between the two representations. The strain energy in both

representations (damaged and undamaged) are assumed to be the same. Unlike the

strain equivalence, in this case, the assumption helps to obtain symmetric stiffness

matrix during damage analysis. Moreover, total energy equivalence is also commonly

used to analyze damage in materials.

2.7.3 Drawbacks of Continuum Damage Mechanics (CDM)

The process of damage in a material can be captured using damage variables.

These variables are easily incorporated in any finite element analysis code to simulate

the initiation and progression of damage or crack. However, there are numerous

issues that can be raised in this continuum damage analysis approach. The

main drawbacks of CDM for numerical implementations are its pathological mesh

dependency and improper convergence which originated from strain localization due
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to strain softening, damage localization and stress singularity at crack tip. Numerous

researchers proposed possible solutions to resolve these problems [130–132]. The

common methods to solve the mesh dependency problems are nonlocal damage

[133, 134], gradient method [135, 136] and viscous regularization [137]. The nonlocal

approach described in Refs. [130, 133] proposed averaging weighted local field

at integration points within its vicinity. The weighting value is a function of

characteristic length which may be expressed using the Gaussian weighting function.

2.8 Basic of Micromechanics

The properties of any material depend on the length scale that one uses to

characterize it. For instance, metals, at nano-scale, show anisotropic properties

and, yet at micro and global scale, metal exhibits isotropic properties. Whereas

composites show anisotropic properties both at micro and global scale due to their

inherent heterogeneity particularly at micro scale. Thus, composites require very

fine micro structural details for performing direct numerical simulation using FEA.

However, it is nearly impossible to capture of all the details using a fine mesh and it is

also computationally demanding due to large number of degrees of freedom for FEA

analysis. Thus, it is a common practice to use the concept of homogenization to obtain

the effective properties of composites. This concept helps to idealize composite with

all its heterogeneities (for instance, fiber and matrix) to its equivalent homogeneous

material properties. This approach also helps to perform dehomogenization of the

local fields (stress and strain) of the composite for an arbitrary global load applied on

a macro structure. The homogenization of an imaginary heterogeneous material to its

equivalent homogeneous material properties is performed by using micromechanics as

a tool. According to Yu and Tang [138], a typical micromechanics approach consists

of the following steps:

1. investigate the microstructure of a composite and identify the periodically (at

least locally) repeating unit cell (UC) or representative volume element (RVE);
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2. compute the effective properties of the composite from the constitutive modeling

of the UC, or to say, homogenize the composite;

3. assign the effective properties to the macroscopic structure to determine the

global response;

4. substitute the global response into the UC and recover the local (displacement,

strain, and stress) fields, or to say, dehomogenize the composite.

Various micromechanics models or approaches have been proposed and widely used for

homogenization of heterogeneous materials. These models range from pure analytical

approaches to numerical approach such as RVE analysis, usually performed using

3D finite element analysis, named as 3D FEA in this work. The most common

micromechanics models are: rules of mixtures, Hashin-Shtrikman bounds, and mean

field approaches such as Mori-Tanaka method, self-consistent method, generalized

self-consistent method, and the method of cells and its variants, and others such

as mathematical homogenization theories, mechanics of structure genome and RVE

analysis.

Mean Field Approaches

The hypothesis of Eshelby’s inclusion problems has made a significant contribution

for the development of mean field approaches (Mori-Tanaka method, self-consistent

method, generalized self-consistent method and others). Mean field approaches are

semi-analytical in their formulation, and the effective properties of a heterogeneous

materials are obtained based on the average fields in each constituent. The local

averaged fields in each constituent are also approximated from the global load using

stress/strain concentration tensor proposed by Hill [139]. The mean field approaches

(MFA) can better predict the effective properties particularly the elastic modulus

compared with rules of mixtures, but the predictions of shear moduli are not good

enough compared with the predictions obtained from the RVE analysis. Moreover,
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MFA inherently assume uniform fields in each constituent which results in inaccurate

prediction of local fields. This, in turn, makes the approaches not rigorous enough to

analyze failure and damage in heterogeneous materials.

Methods of Cells (MOCs)

The methods of cells and its invariants generalized method of Cells (GMC) and

high fidelity generalized methods of cells (HFGMC) are proposed by Aboudi and

his co-workers [140–142] to solve micromechanics problems. The basic concept of

these approaches is subdividing the UC into numerous cuboid subcells, and solving

for the average strain and stress over each subcell by imposing displacement and

traction continuities among the adjacent subcell, and also periodic conditions on the

opposite sides of the UC. The predictions of the effective properties are then obtained

based on the estimates of averaged local fields of each subcell. GMC has an inherent

axial-shear coupling problem due to constant displacement in subcell obtained from

assumed displacement expansion. Thus, the predictions of the local fields are not

accurate. HFGMC resolved the issue of axial shear coupling problem but it achieves

better predictions of local fields at the expense of computing time. The MOCs and

its variants solve the problems to a certain extent compared with the mean field

approach but they suffer two major drawbacks. First, the use of cuboid subcells

introduces domain approximation errors. Second, the use of average local fields may

not rigorous enough to predict local fields variation in the microstructure at least

compared with 3D RVE analysis.

Mechanics of Structure Genome (MSG)

MSG is a recently developed general approach for constitutive modeling of

composites. It is a framework by carrying out an asymptotic analysis of the

variational statement, synthesizing the merits of both variational methods and

asymptotic methods. MSG is aimed to minimize the information loss between the
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original heterogeneous material and the imaginary homogenous representations. MSG

based micromechanics approach has the advantages of analytical micromechanics

approaches and the versatile modeling capability of the RVE analysis. A more

detailed insight of MSG is presented in the next section. Unlike other micromechanics

approach, there is no ad hoc assumptions including the shape of inclusions that are

considered in MSG. MSG is proven to have an outstanding capability of predicting

both the effective properties and local stress fields of a heterogeneous material [5,143].

This makes MSG preferable to analyze damage and failure in heterogeneous materials.

Finite Element Analysis Based Micromechanics

This approach always require a 3D microstructure or representative volume

element (RVE) to perform micromechanical analysis. It is the most common

approach to obtain effective properties of the heterogenous materials. The RVE

problem is analyzed by solving well posed boundary value problems, formulated

using equilibrium equation without body force along with homogeneous traction

or displacement boundary conditions. In this analysis, homogenous displacement,

homogenous traction or periodic boundary conditions are commonly used to obtain

the effective properties. In this case, a complete set of the effective properties of

a given microstructure is obtained by applying boundary conditions for 6 different

loading conditions. This makes RVE analysis based micromechanics approach to be

inefficient compared with MSG [143].

Predictive Capabilities of Micromechanics Approaches

Various micromechanics approaches have been developed and widely used to

predict the effective properties and local fields of heterogeneous materials. In

order to support practitioners and researchers to select the suitable approach or

tools based on their available resources, numerous analyses were performed to

compare the prediction capabilities and efficiency of the developed micromechanics
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approaches. In Ref. [144], the predictive capabilities of various analytical and mean

field micromechanics approaches were analyzed for discontinuous fiber-reinforced

composites. The effective properties and local field predictions of heterogenous

materials with various microstructure were analyzed using several micromechanics

approaches in Ref [4, 5, 143]. The extensive study was also conducted to critically

evaluate the capabilities and also efficiency of various state of the art micromechanics

approaches [143]. The evaluation showed that MSG is as accurate as 3D RVE analysis

and yet more efficient.
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3. MATHEMATICAL MODELING

3.1 Damage Variable

The concept of CDM is first formulated based on the hypothesis of Kachanov [126]

which postulates the gradual deterioration of the effective cross-sectional area that

sustains the applied load. Thus, the damage variable can be expressed as

d =
A− Ã

A
(3.1)

where A denotes total cross sectional area, Ã denotes effective cross-sectional area.

The value of d shows the level of damage in the material when d = 0 shows undamage

states (no damage) and, if d = 1 shows a complete failure. Generally, d ≤ Dc, Dc

is the critical damage level beyond which the material cannot sustain any load. The

damaged constitutive model is usually expressed as

C(d) = (1− d)C (3.2)

where C denotes the stiffness of undamaged material. This formulation holds only

for the isotropic damage. However, in most cases, the damage may not be necessarily

isotropic. Thus, in general, the damage may be better expressed using a second-order

tensor which considers the directional dependency of the damage parameter.

First, let d and D denote the second-order and fourth-order damage tensors,

respectively. Let d be symmetric, and expressed as

d =

⎡
⎢⎢⎢⎣

d11 d66 d55

d66 d22 d44

d55 d44 d33

⎤
⎥⎥⎥⎦ (3.3)
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then mapping d in to the fourth-order tensor D which can be written as

D =
3∑

i=1

3∑
j=1

dijei ⊗ ej ⊗ ei ⊗ ej (3.4)

The damage effect tensor M can be expressed as

M = I −D (3.5)

where I denotes the fourth-order identity tensor. Based on the elastic strain energy

equivalence of the damaged and undamaged material, the stiffness of the damaged

material may be expressed as [129]

C(d) = M : C̃ : M (3.6)

where C(d) denotes the fourth-order damaged elasticity tensor of the material, and

C̃ denotes the fourth-order undamaged elasticity tensor of the material.

Second, let the damage only affect the diagonal terms of compliance tensor of the

material then the damaged compliance tensor can be expressed as

S(d) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1111

1−d11
S1122 S1133 S1123 S1113 S1112

S2222

1−d22
S2233 S2223 S2213 S2212

S3333

1−d33
S3323 S3313 S3312

S2323

1−d44
S2313 S2312

SYMM S1313

1−d55
S1312

S1212

1−d66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.7)

Using the strain equivalence approach, the stress in the damaged and undamaged

configuration can be related as

σ̃ = M−1 : σ, M−1 = S−1 : S̃ (3.8)

where S̃ denotes effective compliance tensor in the undamaged material, and S
denotes compliance in the damaged material. It should be noted that M in Eq. (3.5)

and Eq. (3.8) are different.
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3.2 Basics of Thermodynamics

3.2.1 State Variables

In the general thermomechanical problems, the phenomena of elasticity, plasticity,

and the thermal effects may be modeled using irreversible thermodynamics

formulation. Any thermodynamic system can be characterized by a set of variables

that describe the state of a given system. The thermodynamic state variables may

be classified based on their observability as external variables and internal variable.

The external variables are measured from outside while internal variables are not

[129, 145]. The thermomechanical response of a given material can be adequately

captured by selecting appropriate external and internal state variables.

3.2.2 Thermodynamic Free Energy

The damage/fracture in a given material can be related to various thermodynamic

external and internal state variables. These external/observable state variables can be

second-order elastic strain tensor εe and temperature T with their associated variables

second-order stress tensor σ and entropy S, respectively. The internal variables could

be accumulated plastic strain r with its associated variable R and kinematic hardening

variable or back stress α with its associated variable A, respectively. On this basis,

let the Helmholtz free energy be expressed as a function of the given state variables

as

ψ = ψ(εe, T, r,α, Vk) (k = 1, 2, ...., n) (3.9)

where ψ denotes energy per unit mass of the material, Vk denote other internal

variables depending on the physical phenomena in the system. Similarly, the Gibbs

free energy can also be expressed using the Helmholtz free energy as

Γ(T,σ, Vk) = ψ − 1

ρ
σ : ε (3.10)
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The Gibbs free energy is usually used to model a given thermomechanical system in

stress space while the Helmholtz free energy is for strain space.

The effect of kinematic harding is observed to be negligible for large plastic strain

such as in a fatigue analysis and progressive damage [11, 129]. On this basis, let

accumulated plastic strain r, the second-order damage tensor d and damage hardening

parameter β, be the internal variables. Moreover, let the material exhibit uncoupled

plastic and damage behaviour. Thus, the Helmholtz free energy for isothermal process

can be written as

ψ = ψe(ε
e,d) + ψp(r) + ψd(β) (3.11)

where ψe denotes the Helmholtz free energy for elastic part of the material, ψp(r) for

plastically deformed part of the material, and ψd(β) for damaged part of the material.

3.2.3 Dissipation Potential Approach (DPA)

The energy is dissipated during the process of damage occurrence. The

dissipation potential can then obtained as follows. Substituting Eq. (3.11) into the

Clausius-Duhem inequality, one can obtain a general form of the dissipation potential

as

(σ − ρ
∂ψ

∂εe
) : ε̇e + σ : ε̇p − ρ

∂ψ

∂r
ṙ − ρ

∂ψ

∂d
: ḋ− ρ

∂ψ

∂β
β̇ ≥ 0 (3.12)

This inequality must be satisfied for any values of ε̇e, ε̇p, ṙ, ḋ and β̇. If damage d

and plastic strains εp do not exist in the material, then the inequality can be satisfied

only for σ = ρ ∂ψ
∂εe

which gives the elastic constitutive equation. Moreover, let y and

B be thermodynamic conjugate force variables and damage hardening parameter,

respectively. These variables can be related to the Helmholtz free energy as

R ≡ ρ
∂ψp

∂r
, y ≡ −ρ

∂ψe

∂d
, B ≡ ρ

∂ψd

∂β
(3.13)
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where R accounts for the plastic energy release rate due to accumulated plastic strain.

Using Eq. (3.12) and (3.13), dissipation potential per unit volume can be described

as

Φ = σ : ε̇p −Rṙ + y : ḋ− Bβ̇ ≥ 0 (3.14)

For uncoupled plasticity and damage behaviour, the dissipation potential per unit

volume Φ can decomposed into dissipation due to plasticity and damage as

Φ = Φp + Φd (3.15)

where

Φp = σ : ε̇p −Rṙ and Φd = y : ḋ− Bβ̇ (3.16)

3.2.4 Yield and Damage Criteria

The initiation of yielding in a material occurs when the material reaches its

maximum elastic limit beyond which the material experiences plastic strain. Similarly,

damage occurs when a material undergoes small deformation up to its elastic limit for

brittle material but for ductile material, damage occurs after the material experiences

excessive plastic strain. Thus, the yield and damage criteria can then be expressed,

respectively, as

fp(σ, R) ≤ 0 and fd(y, B) ≤ 0 (3.17)

One can assume a pseudo-plastic and damage potential to be Fp(σ, R) and Fd(d, β),

respectively. Based on the dissipation mechanism, the flow rule for uncoupled

plasticity and damage can be expressed using two independent multipliers, λ̇p and

λ̇d, such that the plastic and damage evolution rate can be written independently

as [129]

ε̇p = λ̇p
∂Fp

∂σ
, ṙ = −λ̇p

∂Fp

∂R
, ḋ = λ̇d

∂Fd

∂y
, β̇ = −λ̇d

∂Fd

∂B
(3.18)

Once ψ, Fp, fp, Fd, and fd are known, the two independent multipliers can be uniquely

determined.
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Plasticity

For plastically deformed part of the material, it should be noted that plastic

deformation can only occur in the effective stress space, i.e., undamaged part. Thus,

Hill’s yield criterion can be used to analyze yield surface of the undamaged part

[11, 129].

fp(σ, R) = σeq −R− σy ≤ 0, σeq =

√
3

2
(σ̃)′ : H : (σ̃)′ (3.19)

where fp denotes yield function, R denotes isotropic hardening (due to plastic strain),

and σy denotes stress threshold, H denotes a positive semi-definite tensor of the

fourth-order characterizing the yield condition of orthotropic materials, ()
′
denotes

deviatoric part of the field. Let R be expressed using Voce hardening law as [129,145]

R = Q[1− e(−br)] (3.20)

where Q and b denote isotropic hardening parameters and also let the plastic flow

obey the associative flow rule, i.e., Fp = fp. The loading and unloading conditions of

Eq. (3.18) can be obtained using Kuhn-Tucker conditions.

λ̇p ≥ 0, fp ≤ 0, λ̇pfp = 0 (3.21)

Then, independent multiplier of plasticity in Eq (3.18) can be uniquely obtained from

consistency equation ḟp = 0.

ḟp =
∂fp
∂σ̃

: ˙̃σ +
∂fp
∂R

∂R

∂r
ṙ (3.22)

The rate equation of effective stress space for decoupled plastic damage can be written

as

˙̃σ = C(d) : (ε̇− ε̇p) (3.23)

Substituting Eq. (3.23) into Eq. (3.22) and using Eq. (3.18) and Eq. (3.19), after a

few algebraic manipulations, one obtains

λ̇p =

(
∂fp
∂σ̃

: C(d) : ε̇
∂fp
∂σ̃

: C(d) : ∂fp
∂σ̃

+ ∂R
∂r

)
, ṙ = λ̇p (3.24)
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Then, the evolution of plastic strain ε̇p in Eq. (3.18) can be written using Eq. (3.24)

as

ε̇p =

(
∂fp
∂σ̃

: C(d) : ε̇
∂fp
∂σ̃

: C(d) : ∂fp
∂σ̃

+ ∂R
∂r

)
∂fp
∂σ̃

(3.25)

Damage

For damaged part, it is assumed that there exists the damage potential Fd, such

that Fd = fd = 0, in the space of the thermodynamic conjugate force y and B, such

that the convex surface of the damage criterion may be expressed as [146]

fd(y,d, B) = YEQ − (Bo +B) = 0 (3.26)

where YEQ =
[
1
2
y : L(d) : y

]1/2
denotes equivalent damage energy release rate, Bo

denotes damage threshold (material dependent value). L(d) denotes the fourth-order
damage tensor function which can be expressed using index notation as [146]

Lijkl =
1

2
(δikδjl + δilδjk) +

1

2
cd(δikdjl + dikδjl + δildjk + dilδjk) (3.27)

where cd denotes a material constant. Using the damage potential, damage evolution

rate and the rate of change of damage parameter can be expressed as

ḋ = λ̇d
∂fd
∂y

, and β̇ = −λ̇d
∂fd
∂B

(3.28)

where ḋ denotes the rate of damage flow, ∂fd
∂y

denotes the direction of flow of damage.

Let ρψd(β) be expressed as [129,145]

ρψd(β) =
S2

2Lo
, S = L(1− e−oβ) (3.29)

Substituting Eq. (3.29) into Eq. (3.13), one can obtain

B = L(1− e−oβ) (3.30)
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where L and o are constant to be obtained from curve fitting with experimental data

for monotonic loading. The loading and unloading conditions of Eq. (3.28) can be

obtained using Kuhn-Tucker conditions.

λ̇d ≥ 0, fd ≤ 0, λ̇dfd = 0 (3.31)

where λ̇d is obtained from consistency conditions ḟd = 0 as [129]

ḟd =
∂fd
∂y

: ẏ +
∂fd
∂B

∂B

∂β
β̇ +

∂fd
∂L

∂L
∂d

: ḋ = 0 (3.32)

From Eq. (3.13) and using Eq. (3.11), one can write

ẏ =
∂y

∂εe
: ε̇e +

∂y

∂d
: ḋ (3.33)

Using Eq. (3.26), one can obtain ∂fd
∂B

= −1, and from Eq. (3.28), β̇ = λ̇d can be

obtained, then using Eq. (3.28), Eq. (3.32) can be rewritten as

ḟd =
∂fd
∂y

:

(
∂y

∂εe
: ε̇e +

∂y

∂d
: ḋ

)
− ∂B

∂β
λ̇d +

∂fd
∂L

∂L
∂d

: ḋ = 0 (3.34)

Using ḋ from Eq. (3.28) and ∂fd
∂y

= L:y
2YEQ

, Eq. (3.34) can be simplified as

ḟd =
1

2YEQ

y : L :

(
∂y

∂εe
: ε̇e
)
+ Lλ̇d = 0 (3.35)

where L = − 1
2YEQ

(
y : L :

(
∂y
∂d

: ∂fd
∂y

))
− 1

4YEQ

(
y :
(
∂L
∂d

: y
)
: ∂fd

∂y

)
+ ∂B

∂β
. Then, the

damage evolution rate can be expressed as

λ̇d =

1
2YEQ

y : L :
(

∂y
∂εe

: ε̇e
)

L
(3.36)

The two damage models described in Eq. (3.6) and (3.7) can be considered

in this study. However, the first damage model does not give the predictions of

thermodynamic conjugate force y consistent with the dissipation potential Φd in

Eq (3.16) that require y ≡ −ρ∂ψe

∂d
≥ 0. For instance, for uniaxial global loading, the

model gives y22 < 0 and y33 < 0 while y11 > 0. Moreover, as one obtains large value

of damage in axial direction and small values for all other damage, all components of
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y < 0. This problem is partly due to the effect of Poisson’s ratio. For unidirectional

loading, there will be deformation particularly contractions in transverse direction.

Thus, the effect of the transverse strain yields y22 < 0 and y33 < 0. However, the

problem may not be encountered for multi-directional loadings. It is also noticed

that many fourth-order damage effect tensors with zero off-diagonal terms also suffer

a similar problem.

For the second damage model, thermodynamic conjugate force y can alteratively

be obtained from Gibbs free energy from Eq (3.10) or complementary energy G using

the proposed damage model, Eq (3.7), as [100]

y =
∂G

∂d
, G =

1

2
σ : S(d) : σ (3.37)

3.3 Elasto-Plastic Constitutive Equation

The uncoupled elastoplastic constitutive equation of the damaged material is

derived as follows. From additive decompositions of strain one can have

ε = εe + εp (3.38)

The rate equation for effective stress can be written as

˙̃σ =
∂σ̃

∂εe
: ε̇e +

∂σ̃

∂d
: ḋ (3.39)

Ductile Failure

For ductile failure, it can be postulated that the material undergoes excessive

plastic deformation before failure occurs. Thus, using Eq. (3.38), Eq. (3.39) can be

rewritten as

˙̃σ = C(d) : (ε̇− ε̇p) +
∂σ̃

∂d
: ḋ (3.40)
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Substituting Eq (3.25) into Eq (3.40) and using Eq (3.36) and (3.28) and ∂σ̃
∂d

=

∂C(d)
∂d

: ε, the rate equation for uncoupled damaged elastoplastic constitutive equation

can be expressed for small incremental loading as

δσ̃ = Cepd : δε (3.41)

where Cepd denotes damaged elastoplastic tangent stiffness tensor and it can be

expressed as

Cepd = C(d)−
(
C(d) : ∂fp

∂σ̃

)
⊗
(

∂fp
∂σ̃

: C(d)
)

∂fp
∂σ̃

: C(d) : ∂fp
∂σ̃

+ ∂R
∂r

+
1

YEQ L

(
∂C(d)

∂d
: ε

)(
∂fd
∂y

⊗ (FLyε)

)
+Cpd

(3.42)

where FLyε = y : L : ∂y
∂εe

, and

Cpd = − 1

YEQ L

(
∂C(d)

∂d
: ε

)(
∂fd
∂y

⊗ (FLyε)

)⎛⎝ ∂fp
∂σ̃

⊗
(

∂fp
∂σ̃

: C(d)
)

∂fp
∂σ̃

: C(d) : ∂fp
∂σ̃

+ ∂R
∂r

⎞
⎠ (3.43)

where the first term in Eq (3.42) represents elastic case, the second term for plastic

case, the third term is for damage, and the fourth term represents the combined effect

of both plasticity and damage.

Brittle Failure

For brittle failure, it is assumed that the plastic strain is negligible. Thus, the

constitutive law for elastic damage analysis for a small incremental load can be

obtained from Eq (3.42) for εp ≈ 0 and ε ≈ εe as

Cepd = C(d) +
1

YEQ L

(
∂C(d)

∂d
: εe
)(

∂fd
∂y

⊗ (FLyε)

)
(3.44)

3.4 Failure Criteria Approach (FCA)

This approach is similar to the first-ply type failure analysis approach [29], which

commonly used to analyze failure in composite laminate. The difference is in FCA
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approach, failure is analyzed at material point, while the first-ply approach, failure

is analyzed at lamina level, i.e. macromechanical approach. The current approach

also uses stiffness degradation method. Thus, we can use the second-order damage

tensor in Eq (3.3) and also the damaged compliance tensor in Eq (3.7). In this case,

a material point is evaluated using a given failure criterion and a specified damage

value is assigned. This can be analyzed as follows.

First, failure is evaluated at each numerical integration point using any given

failure criterion in all directions, i.e., analyzing failure for all normal and shear

stresses/strains using the corresponding strengths. Second, if failure occurs in any

direction, the stiffness in the corresponding direction will be set to be negligible/small.

That is, the value of dij in the corresponding direction set to be close to unit value

so that the stiffness is sufficiently degraded. This can be seen by using Eq (3.7).

For instance, if the failure happens in direction 1, then d11 ≈ 0.99999 while others

dij << d11. The loading increment continues until sufficient number of material

points are degraded. Based on the global response of the SG, the number of material

points sufficient to create final failure are iteratively calibrated using experimental

data. It can be calibrated as follows. First, assume if 10% of the total material points

fail, the whole SG will fail, and perform the analysis, and compare the result with

experiment. If the predicted strength is above the experimental data, reduce it to 5%

and try again, but if the predicted strength is less than the experimental data and

increase to 15% and try again. The volume of material points which better match

with the experimental data is then selected.

3.5 nonlocal Approach

The pathological mesh dependency of local continuum damage mechanics can

be solved using various nonlocal approaches. The nonlocal field can be obtained

by smearing damage variable or local fields over the entire material or constituents.

However, in damage analysis, where localized material degradations play a major role
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for gradual or sudden failure of a component, it is more reasonable to consider the

weighted average local field computed within its proximity than smearing over the

whole material domain. The weighted averaged local field for a given point can be

obtained as [130,133,134]

〈f〉 =
∫
v
wf dv∫
v
wdv

(3.45)

where 〈f〉 denotes weighted averaged local fields (strains/stresses) at integration

point, w(l) denotes Gaussian weighting functions expressed as w(l) = e−(αw l/λw)2 . The

parameter λw denotes characteristic length for averaging the local field, v denotes the

domain occupied by λw, l denotes the location of points from a point of interest

and should not be greater than the λw. The smallest domain could be averaging

within an element, and αw denotes weighing function. The damage potential surface

(threshold), damage evolution rate, elastic energy release rate, damage parameter can

then be expressed using the pointwise nonlocal fields designated as f̄p, f̄d, λ̄d, y and

β, respectively.

3.6 Interfacial Constitutive Model

Various models have been proposed and widely used to analyze the effect of

imperfect interface on the properties of heterogeneous materials [49]. These models

may be categorized as linear and nonlinear interfacial models. For the present

study, let the interfaces among the different constituents be subjected to infinitesimal

displacement jumps across the interface. The linear traction displacement model can

then be adopted to analyze the effect of imperfect interface on the effective properties

and failure strength of these materials. The linear traction displacement model may

be expressed as [147]

Ti = Dij[uj], [uj] = u1 − u2, (3.46)

where Ti denote interfacial traction, and [uj] denote displacement jumps cross the

interface between constituent 1 and 2, and Dij denote the second-order interface

constitutive tensor (interface stiffness with unit (Pa/m)). The interfacial displacement



www.manaraa.com

55

Figure 3.1. Interface failure modes between two surfaces

jump or failure can be expressed by three modes. Let the displacement jump normal

to the interface be represented as Model I failure with the corresponding interfacial

stiffness, DI , and let the two displacement jumps in the plane of the interface be

presented as Mode II and Mode III failures with the corresponding interfacial stiffness

DII and DIII , respectively, as shown in Figure 3.1. The two surfaces are attached

to each other initially, i.e., the interface has zero thickness with a specified stiffness.

The displacement of the surface 1 and 2 can be, respectively, discretized as

u1
i (xj, yk) = S1(yk)V

1
i (xj) and u2

i (xj, yk) = S2(yk)V
2
i (xj) (3.47)

where x and y denote the macro and micro variables, up
i denote displacement vector

on the surface p in direction i, Sp denote the shape function and V p
i denote the

nodal displacement vector on the surface p. Then, the displacement jump across the

interface can be written using a matrix notation as

[u] = [S]V where [u] = u1 − u2, [S] =
[
S1 −S2

]
, V =

⎧⎨
⎩ V 1

V 2

⎫⎬
⎭ (3.48)
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Let the displacement jumps in all directions are decoupled, i.e, tangential

displacement in one direction does not affect the other tangential and/or the normal

displacement jump. Thus, Eq. (3.46) can be casted as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T1

T2

T3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣

DIII 0 0

0 DII 0

0 0 DI

⎤
⎥⎥⎥⎦
[
S1 −S2

]⎧⎨
⎩ V 1

V 2

⎫⎬
⎭ (3.49)

For a 3D SG, we can have a four-noded interface element. The displacement vector

and the shape function of the interface element can be expressed as

V p =
{

up1
1 up1

2 up1
3 up2

1 up2
2 up2

3 up3
1 up3

2 up3
3 up4

1 up4
2 up4

3

}T

(3.50)

and

Sp =

⎡
⎢⎢⎢⎣

N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4

⎤
⎥⎥⎥⎦ (3.51)

where upk
i denote the displacement in the local coordinate yi direction for surface p at

the node k, Sp denote the shape function for surface p, and Nk denote the components

of shape function at node k. Similarly, for a 2D SG, we can have two-noded interface

element. The displacement vector and the shape function can be expressed as

V p =
{

up1
1 up1

2 up1
3 up2

1 up2
2 up2

2

}T

(3.52)

and

Sp =

⎡
⎢⎢⎢⎣

N1 0 0 N2 0 0

0 N1 0 0 N2 0

0 0 N1 0 0 N2

⎤
⎥⎥⎥⎦ . (3.53)

For a 1D SG, the displacement vector and the shape function of the interface element

can be expressed

V p =
{

up1
1 up1

2 up1
3

}T

(3.54)
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and

Sp =

⎡
⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎦ (3.55)

and consequently, Eq. (3.49) can be expressed for 1D as

⎡
⎢⎢⎢⎣

T1

T2

T3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

DIII 0 0

0 DII 0

0 0 DI

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u11
1

u11
2

u11
3

u22
1

u22
2

u22
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.56)

One of the basic and necessary assumption in the homogenization of heterogeneous

materials is that the exact solutions of the field variables have volume averages over

the SG. For example, if ui are the exact displacements within the SG, there exist vi

such that

vi =
1

Ω

∫
Ω

uidΩ ≡ 〈ui〉, (3.57)

where Ω denotes the domain occupied by a SG and also its volume, and 〈·〉 denotes
the volume average over Ω. Using this equation, it is common to express the exact

solution ui as a sum of the volume average vi and the difference, such that

ui(x, y) = vi(x) + wi(x, y), (3.58)

where wi(x, y) usually called fluctuating function. It is clear that 〈wi〉 = 0 according

to Eq. (3.57). Interested readers may refer to Ref. [148–150] for more details. In

the view of Eq. (3.58), the displacement jump [u] in Eq. (3.46) and (3.48) can be

rewritten as

[u] = [w], (3.59)

Using Eqs. (3.48), (3.49) and (3.59), the strain energy due to interfacial displacement

jumps can be expressed as

Wint =
1

2

∫
γ

[w]TD [w]dγ =
1

2

∫
γ

V TD
∗
V dγ (3.60)
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where Wint denotes interfacial strain energy and γ denotes interface area in side SG,

V denotes displacement vector of the interface, V depends on the dimension of SG

as described above, and D
∗
denote a interfacial stiffness which may be expressed as

D
∗
= [S]TD[S] (3.61)

3.7 Mechanics of Structure Genome (MSG)

MSG provides a general-purpose micromechanics theory when it is applied to

constitutive modeling of 3D structures. The term genome is used to emphasize the

fact that it contains all the constitutive information needed for a structure the same

fashion as the genome contains all the intrinsic information for an organisms growth

and development. For 3D bodies, A SG serves a similar role as a RVE or unit cell (UC)

concept in micromechanics (see Figure 3.2). However, they are different. For example,

for a structure made of composites featuring 1D heterogeneity (e.g. binary composites

made of two alternating layers, see Figure 3.2(a), the SG will be a straight line with

two segments denoting corresponding different layers. A 3D SG for 3D structures

represents the most similar case to RVE. However, boundary conditions in terms of

displacements and tractions indispensable in RVE-based models are not needed for

SG-based models. Interested reader can refer to Yu [151] for more details on MSG.

The properties of heterogeneous materials vary with scale and also in view of the fact

that the size of SG is much smaller than the overall size of the macroscopic structure,

we introduce a set of micro coordinates yi = xi/ε with ε being a small parameter to

describe the SG. This basically enables a zoom-in view of the SG at the size similar

as the macroscopic structure. If the SG is 1D, only y3 is needed; if the SG is 2D, y2

and y3 are needed; if the SG is 3D, all three coordinates y1, y2, y3 are needed.

In multiscale structural modeling, it is postulated that all the information can

be obtained from the SG in combination with the macroscopic structural model. In

other words, a field function of the original heterogeneous structure can be generally

written as a function of the macro coordinates xk which remain in the macroscopic
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Figure 3.2. SG for different dimensions

structural model and the micro coordinates yj. The partial derivative of a function

f(xk, yj) can be expressed as

∂f(xk, yj)

∂xi

=
∂f(xk, yj)

∂xi

|yj=const +
1

ε

∂f(xk, yj)

∂yi
|xk=const ≡ f,i +

1

ε
f|i (3.62)

The deformed and undeformed configurations of structure of any type can be

expressed using position vector based on the type of the structure we have, i.e.,

beam, plate/shell, 3D structure. Interested readers can get details of this method in

Ref. [151]. The governing equation can be expressed using the following variational

statement

δU = δW (3.63)

δ is the usual Lagrangean variation, U is the strain energy and δW is the virtual

work of applied loads. The bars over variations are used to indicate that the virtual

quantity needs not be the variation of a functional. For a linear elastic material

characterized using a 6×6 stiffness matrix D and assuming imperfect interface among

the constitutes of the heterogeneous materials, the strain energy can be written as

U =
1

2

∫
1

ω

〈
ΓTDΓ

〉
dΩ +

1

2

∫
1

ω

∫
γ

([u]TD[u])dγdΩ, (3.64)

where Ω is the volume of the domain spanned by xk remaining in the macroscopic

structural model, ω denotes the volume of the domain spanned by yk corresponding
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to the coordinates xk, remaining in the macroscopic structural model and [u] denotes

the interfacial jump across the interface of the constituents, D denotes second-order

interfacial constitutive tensor (interfacial stiffness) and γ denotes the area domain

spanned by the interface, Γ denotes 3D strain field which can be written as

Γ = Γhw + Γεε̄ (3.65)

where Γ = �Γ11 Γ22 Γ33 2Γ23 2Γ13 2Γ12�T , w = �w1 w2 w3�T , ε̄ is a column matrix

containing the generalized strain measures for the macroscopic structural model, ε̄ =

�ε11 ε22 ε33 2ε23 2ε13 2ε12�T with εij. Γh is an operator matrix which depends on

the dimensionality of the SG. Γε is an operator matrix, which is 6× 6 identity matrix

for 3D Model. By using the variational statement in Eq. (3.63), the strain energy in

Eq. (3.64) and (3.60) and also using Eq. (3.59), the first approximation of variational

statement obtained in Ref. [152] can be modified, for imperfect interface among the

constituents, as

δ
1

2
(
〈
(Γhw + Γεε̄)

TD(Γhw + Γεε̄)
〉
+
〈
[w]TD[w]

〉∗
) = 0. (3.66)

where 〈·〉∗ denotes integrating over interface area domain. For very simple cases, this

variational statement can be solved analytically, while for general cases we need to

use numerical techniques such as the finite element method for solution which has

been implemented in the computer code SwiftComp.

3.7.1 Analytical Solution

For layered composites (see Figure 3.2(a)), Eq. (3.66) can be analytically solved

to obtain the exact solution. In this case, the heterogeneity only occurs through

the thickness along y3 as shown in the Figure and, in y1 − y2 plane, each layer

is homogeneous. Thus, wi are functions of y3 only, that is, the partial derivatives

of the fluctuation functions wi,j vanish except for wi,3. Similarly, the interface

is assumed to have uniform traction and displacement jumps. The minimization
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problem for micromechanical analysis of layered composites with imperfect interface

can be restated using a matrix form as

Π =
1

2

〈
ΓTDΓ

〉
+

1

2

〈
[w]T D̄[w]

〉∗
(3.67)

with Γ =
⌊
ε̄11 ε̄22 ε̄33 +

∂w3

∂y3
2ε̄23 +

∂w2

∂y3
2ε̄13 +

∂w1

∂y3
2ε̄12

⌋T
as the microscopic

strain field. The microscopic stress field within SG can be obtained as

σ = DΓ (3.68)

with σ =
⌊
σ11 σ22 σ33 σ23 σ13 σ12

⌋T
holding the six components of the stress

tensor. Using constraints on the fluctuation functions

〈wi〉 = 0,
〈
w(i,j)

〉
= 0 (3.69)

and by applying the normal procedures of calculus of variations and enforcing

the constraints using Lagrange multipliers, one can obtain three Euler-Lagrangain

equations as

∂

∂y3
(σ13 −D22[χ1]) = 0,

∂

∂y3
(σ23 −D33[χ2]) = 0,

∂

∂y3
(σ33 −D11[χ3]) = 0.

(3.70)

Similarly, one can also derive the following conditions relating the transverse stresses

at the boundary points of SG

σi3

(
y1, y2,−h

2

)
= σi3

(
y1, y2,

h

2

)
. (3.71)

The three stress continuity conditions on each interface of the layers can be expressed

as

[σi3] = 0 (3.72)

Using Eq. (3.70) and (3.72), one can obtain the relationship between the stress and

displacement jumps as

σ13 −DII [χ1] = 0, σ23 −DIII [χ2] = 0, σ33 −DI [χ3] = 0. (3.73)
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Following the procedures described in Yu [149, 153] and using Eq. (3.69) and

Eqs. (3.71)-(3.73), one can solve the problem analytically. It should be noted that

only unique/representative layers are to be used for the analysis. For instance, if two

layers of different material properties are repeated to generate the layered composite

with n number of layers, only the 2 unique layers would be used for the analysis.

First, for the simple case of two isotropic layers, the effective properties of layered

composite with imperfect interface can then be obtained as

E1 = E2 = φ1E
(1) + φ2E

(2) +
φ1φ2E

(1)E(2)(ν(1) − ν(2))
2

φ1E(1)(1− ν(2)2) + φ2E(2)(1− ν(1)2)
(3.74)

G12 =
φ1E

(1)

2(ν(1) + 1)
+

φ2E
(2)

2(ν(2) + 1)
(3.75)

G13 =
D2

IIIφ1E(1)E(2)2 (1+ν(1))
2
( 1
2
+ 1

2
ν(2))+DIIIE

(1)2E(2)(E(2)( 1
4
+ν(1)( 1

4
+ 1

4
ν(2))+ 1

4
ν(2)))

MIII
+

D2
IIIφ2E(1)2E(2)( 1

2
+ 1

2
ν(1))(1+ν(2))

MIII

(3.76)

G23 =
D2

IIφ1E(1)E(2)2 (1+ν(1))
2
( 1
2
+ 1

2
ν(2))+DIIE

(1)2E(2)(E(2)( 1
4
+ν(1)( 1

4
+ 1

4
ν(2))+ 1

4
ν(2)))

MII
+

D2
IIφ2E(1)2E(2)( 1

2
+ 1

2
ν(1))(1+ν(2))

MII

(3.77)

ν12 =
φ1E

(1)ν(1)(ν(2)2 − 1) + φ2E
(2)ν(2)(ν(1)2 − 1)

φ1E(1)(ν(2)2 − 1) + φ2E(2)(ν(1)2 − 1)
(3.78)

ν13 = ν23 =
(ν(1)ν(2) − φ1ν

(1) − φ2ν
(2))(φ1E

(1)(1 + ν(2)) + φ2E
(2)(1 + ν(1)))

φ1E(1)(ν(2)2 − 1) + φ2E(2)(ν(1) − 1)
(3.79)

whereMα = Kv

(−1
2
E(1)E(2) +Dα

(
φ1E

(1)(1 + ν(2))− φ2E
(2)(1 + ν(1))− E(1)(1 + ν(2))

))2
,

Kv = (1 + ν(1))(1 + ν(2)), α = III or II, with φi denotes the volume fraction or

thickness fraction of layer i, E(i) and ν(i) elastic modulus and Poisson’s ratio of

layer i. The explicit exact solution of E3 is very lengthy, thus it is not shown here,

but it is observed to be affected by DI . Eqs. (3.74)-(3.75), (3.78) and (3.79) can

be reduced to the ones obtained by Yu [149] for a perfectly bonded interface.

Eqs. (3.74)-(3.75), (3.78) and (3.79) show that the effective elastic modulus E1

and E2, the shear modulus G12, all Poisson’s ratios (ν12, ν13, ν23) are independent

of interfacial stiffness, while G13 and G23 are dependent on the interfacial stiffness,

DIII and DII , respectively, as shown in Eq. (3.76) and Eq. (3.77).
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Second, for more general case, let the properties of layers be monoclinic. The

effective properties of the layered composite can be expressed as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C∗
11 C∗

12 C∗
13 0 0 C∗

16

C∗
22 C∗

23 0 0 C∗
26

C∗
33 0 0 C∗

36

C∗
44 C∗

45 0

SYMM C∗
55 0

C∗
66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.80)

For the special case of a composite made of two monoclinic layers, the components

of the stiffness tensor can be obtained as

C∗
11 = 〈C11〉+ CE

11(C
(1), C(2), DI), C∗

12 = 〈C12〉+ CE
12(C

(1), C(2), DI)

C∗
16 = 〈C16〉+ CE

16(C
(1), C(2), DI), C∗

26 = 〈C26〉+ CE
26(C

(1), C(2), DI)

C∗
22 = 〈C22〉+ CE

11(C
(1), C(2), DI), C∗

23 =
DI(C

(2)
23 C

(1)
33 φ2+C

(1)
23 C

(2)
33 φ1)

(C
(2)
33 φ1+C

(1)
33 φ2)DI+C

(2)
33 C

(1)
33

C∗
33 =

DIC
(1)
33 C

(2)
33

(C
(2)
33 φ1+C

(1)
33 φ2)DI+C

(2)
33 C

(1)
33

, C∗
13 =

DI(C
(2)
13 C

(1)
33 φ1+C

(1)
13 C

(2)
33 φ2)

(C
(2)
33 φ1+C

(1)
33 φ2)DI+C

(2)
33 C

(1)
33

C∗
36 =

DI(C
(2)
36 C

(1)
33 φ2+C

(1)
36 C

(2)
33 φ1)

(C
(2)
33 φ1+C

(1)
33 φ2)DI+C

(2)
33 C

(1)
33

, C∗
44 =

DIIC
(2)
44 C

(1)
44

(C
(2)
44 φ1+C

(1)
44 φ2)DII+C

(2)
44 C

(1)
44

C∗
55 =

DIIIC
(2)
55 C

(1)
55

(C
(2)
55 φ1+C

(1)
55 φ2)DIII+C

(2)
55 C

(1)
55

, C∗
66 = C

(1)
66 φ1 + C

(2)
66 φ2 = 〈C66〉

C∗
45 =

DIIIDII(C
(2)
44 C

(1)
45 C

(2)
55 φ1+C

(1)
44 C

(2)
45 C

(1)
55 φ2)

((C
(2)
55 φ1+C

(1)
55 φ2)DIII+C

(2)
55 C

(1)
55 )((C

(2)
44 φ1+C

(1)
44 φ2)DII+C

(2)
44 C

(1)
44 )

. (3.81)

where CE
ij are symbols introduced to save space for some lengthy formulas. It appears

that all components of the tensor are affected by interfacial stiffness except C∗
66. It is

also clear that C∗
45 is affected by both DII and DIII , while all others are affected by

only one interfacial stiffness DI , or, DII , or DIII . It can easily be verified that as the
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interfacial stiffness goes to large value, all the components of effective stiffness tensor

converge to the result obtained by Yu [149] for perfect interface.

3.7.2 Numerical Solution

To obtain numerical solution, one needs to express w using shape functions defined

over SG as

w(xk, yj) = S(yj)V (xk) (3.82)

where S represents the shape functions and V denotes a column matrix of the

nodal values of the fluctuating functions. Substituting Eq.(3.82) into Eq.(3.66) and

using Eq.(3.61), we obtain the the following discretized version of the strain energy

functional

U =
1

2

(
V TEV + 2V TDhεε̄+ ε̄TDεεε̄+ V TDintV

)
(3.83)

where

E =
〈
(ΓhS)

T D (ΓhS)
〉

Dhε =
〈
(ΓhS)

T DΓε

〉
Dεε =

〈
ΓT
ε DΓε

〉
Dint =

〈
D

∗〉∗
(3.84)

Minimizing U in Eq. (3.83) subject to the constraints, gives us the following linear

system

(E +Dint)V = −Dhεε̄ (3.85)

It is clear that V will linearly depend on ε̄, and the solution can be symbolically

written as

V = V0ε̄ (3.86)

Substituting Eq. (3.86) back into Eq. (3.83), we can calculate the strain energy

storing in the SG as the first approximation as

U =
1

2
ε̄T
(
V T
0 Dhε +Dεε

)
ε̄ ≡ ω

2
ε̄T D̄ε̄ (3.87)

where D̄ is the effective stiffness to be used in the macroscopic structural model.

The local fields within the original heterogeneous structure can also be obtained as

described in Ref. [151].
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4. NUMERICAL EXAMPLES

In this section, the prediction results of initial failure load, initial failure envelop,

progressive damage and fatigue life for heterogeneous materials are presented. Several

representative examples of heterogeneous materials including binary composite,

continuous fiber-reinforced composite, particle-reinforced composite, discontinuous

fiber-reinforced composite and woven composites are used to demonstrate the

capability of the current approach to predict failure in heterogeneous materials.

4.1 Initial Failure Predictions

In this section, the predictions of initial failure and initial failure envelope of

heterogeneous materials are performed using various micromechanics approaches such

as mean field approach, i.e, Mori-Tanaka (MT) [144, 154] and Double Inclusions

(DI) [155], generalized methods of cells (GMC), high fidelity generalized methods

of cells (HFGMC) [156], SwiftComp and 3D FEA. These approaches employ different

methods of analyzing failure in heterogeneous materials. In the mean field approach,

failure is generally assumed to occur when the average stress/strain in one of the

constituents reaches failure point. The outputs of MT and DI are obtained using

DIGIMAT 5.1.1 software from MSC Software and e-Xstream engineering. In GMC

and HFGMC, failure is assumed to be initiated when the local stress/strain averaged

over the subcell reaches its limiting point. The results of GMC and HFGMC are

obtained using micromechanics analysis code MAC/GMC 4.0 developed by NASA

Glenn Research Center [157]. The in-built failure analysis of this approach supports

only maximum stress/strain and Tsai-Hill failure criteria. For SwiftComp and

3D FEA, failure is assumed to be initiated when the stress/strain at a numerical

integration point (Gauss Point) reaches its maximum limiting value based on the



www.manaraa.com

66

failure criterion. SwiftComp is also used to predict initial failure using a nonlocal

approach, i.e., weighted averaged local field, at numerical integration points denoted

as SwiftComp∗. In this case, characteristic length, λw, and the parameter, αw, are

assumed to be 10% of the shortest dimensional side of the SG and λ2
w/2, respectively.

The results of 3D FEA are obtained using ANSYS by employing periodic boundary

conditions. The in-built failure analysis of ANSYS uses maximum stress failure

criterion, maximum strain failure criterion, Tsai-Wu failure criterion and Tsai-Hill

failure criterion for evaluating failure. All failure analyses are performed using

material properties listed in Table 4.1. It is assumed that the tensile and compressive

strengths are equal.

Table 4.1. Material properties for failure analysis (Refs. [60,158])

Type Material E (GPa) ν Strength (GPa) Shear strength (GPa) Allowable normal strains

1 Fiber 130 0.30 2.800 - 0.0215

Matrix 3.50 0.35 0.070 - 0.0200

2 Fiber 86 0.22 4.800 2.400 0.0553∗

Matrix 4.30 0.34 0.083 0.040 0.0198∗

∗ Approximated based on maximum stress failure criteria.

The predictions of initial failure strength are performed using several

representative examples of composites such as continuous fiber-reinforced composite,

particle-reinforced composite, discontinuous fiber-reinforced composite, and woven

composite. The initial failure strength and envelope are analyzed using various failure

criteria such as maximum normal/shear stress criterion, Tsai-Hill criterion, Tsai-Wu

criterion, maximum shear stress criterion, and maximum normal strain criterion.

Finally, the predictions of SwiftComp are compared with the predictions of mean

field approach, GMC, HFGMC, and 3D FEA for all examples of composites.
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4.1.1 Continuous Fiber-Reinforced Composite

The SG of continuous fiber-reinforced composite is generated by assuming that

a circular fiber is embedded in a square matrix. Let the local Cartesian coordinate

be introduced at the center of SG as y = (y1, y2, y3) with y1 is parallel to the fiber

direction as depicted in Figure 4.1. A in-built 26 × 26 subcell grid is used for GMC

Figure 4.1. SG for continuous fiber-reinforced composite

and HFGMC, and a mesh of 4500 8-noded quadrilateral and SOLID95 elements are

used for SwiftComp and 3D FEA, respectively. First, let the material properties

listed in Table 4.1 (type 1) and the fiber volume of 63% be used to predict the initial

failure strength of the composite. Table 4.2 shows that all approaches except HFGMC

show good agreements for maximum normal stress criterion. However, the current

predictions are observed to be greater than the predictions obtained from Ref. [60]

as shown in Table 4.2. The difference of these predictions may be due to the failure

evaluation method. In Ref. [60], failure is evaluated at central integration points of

each element, which is obviously diferent from analyzing failure based on average local

fields. The other factor may be mesh size and element type used in the reference (not

described). For transverse strength, except for the mean field approaches, the other
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approaches predict relatively closer to the predictions obtained from Ref. [60]. The

predictions obtained using nonlocal approach, SwiftComp∗, are close to SwiftComp

and 3D FEA, which suggests that there are moderate stress gradients in the matrix.

Table 4.2. Axial and transverse failure strength of continuous
fiber-reinforced composite using the maximum normal stress failure
criterion

Strength MT DI GMC HFGMC SwiftComp∗ SwiftComp FEA Ref. [60]

Axial (GPa) 1.64 1.60 1.62 1.76 1.61 1.60 1.60 1.31

Transverse (MPa) 89.36 140.91 40.26 41.16 35.47 34.10 34.21 37.44

The predictions of the axial and transverse failure strengths are also analyzed

for material property of type 2 using maximum normal stress and Tsai-Hill failure

criteria. Tables 4.3 and 4.5 show that the axial strength of the composite increases

with fiber volume fraction for both failure criteria. On the contrary, except for the

mean field approaches and HFGMC, the transverse strength decreases for maximum

stress failure criterion, see Table 4.4. In the transverse direction, failure is mainly

governed by matrix and the stress gradient at the fiber-matrix interface. The increase

of fiber volume fraction will increase the stress gradient thereby increases the chance

of failure of the composite. But this is not observed to be the same for Tsai-Hill

failure criterion, see Table 4.6. It shows that Tsai-Hill criterion predicts the failure

strength with slight difference irrespective the change of volume fraction from 1% to

60%. Generally, all approaches produce close prediction of axial failure strength for

relatively lower fiber volume fractions for both failure criteria, but the predictions

of transverse failure strength are found to be significantly different, see Tables 4.4

and 4.6. It is also clear that the mean field approaches poorly estimate both the axial

and transverse failure strengths particularly for larger fiber volume fractions. The

main reason for the poor predictions of the failure strength may be due to the fact that

in these approaches, failure is evaluated based on the average stress in the matrix and

the fiber. The approaches fail to accurately recover the local stress and strain fields
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within the matrix, the fiber and particularly in the fiber-matrix interface where large

stress/strain gradient is most likely to occur. The predictions of GMC and HFGMC

are better compared with the mean field approaches as the failure is evaluated at

subcell level, except unreasonable prediction of HFGMC for 60% of fiber volume

fractions for both failure criteria and failure strengthes. However, the predictions

obtained from these approaches are also observed to be different from the predictions

obtained based on a pointwise stress, i.e., SwiftComp and 3D FEA. This may be due

to the approximation of local fields in the approaches, i.e., averaging of the local fields

over sub cell. The predictions obtained from SwiftComp∗ are slightly greater than

the SwiftComp and 3D FEA for both axial and transverse strengths, which indicates

slight stress gradients in the composite. It is clear that the micromechanics based

failure analysis has a remarkable potential to predict the initial failure strength of the

composite.

Table 4.3. Axial failure strengths of continuous fiber-reinforced
composite using the maximum normal stress failure criterion

Axial strength (MPa)

Vof(%) MT DI GMC HFGMC SwiftComp∗ SwiftComp 3D FEA

1 99.00 98.92 100.00 100.00 98.35 95.37 95.36

20 339.11 393.98 392.00 440.00 391.72 389.19 389.17

60 1001.5 956.43 970.00 1200.00 973.07 963.26 963.55

The initial failure envelopes are also generated using maximum normal stress and

Tsai-Hill failure criteria. Figure 4.2 indicates that GMC slightly overpredicts the

initial failure limit of the composite for the combined loading conditions, i.e, the

axial and transverse loading conditions, compared with the predictions of 3D FEA,

while SwiftComp shows an excellent agreement with 3D FEA. Please note that failure

envelopes data are normalized using σ110 and σ220, which denote the failure strength

of the composite in uniaxial and transverse directions, respectively. For Tsai-Hill
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Table 4.4. Transverse failure strengths of continuous fiber-reinforced
composite using the maximum normal stress failure criterion

Transverse strength (MPa)

Vof(%) MT DI GMC HFGMC SwiftComp∗ SwiftComp 3D FEA

1 83.64 83.76 74.88 74.00 68.19 51.51 51.66

20 90.16 92.79 56.94 82.00 55.38 52.26 52.27

60 103.91 146.1 50.70 170.00 45.42 44.20 44.19

Table 4.5. Axial failure strength of continuous fiber-reinforced
composite using the Tsai-Hill failure criterion

Axial strength (MPa)

Vof(%) MT DI GMC HFGMC SwiftComp∗ SwiftComp 3D FEA

1 98.89 98.89 100.00 100.00 98.71 97.59 97.32

20 402.26 402.26 399.00 440.00 397.51 395.60 395.28

60 1047.7 1073.00 1022.00 1200.00 1002.04 999.08 998.76

Table 4.6. Transverse failure strength of continuous fiber-reinforced
composite using the Tsai-Hill failure criterion

Transverse strength (MPa)

Vof(%) MT DI GMC HFGMC SwiftComp∗ SwiftComp 3D FEA

1 85.69 85.69 77.60 77.60 75.51 67.98 67.98

20 102.84 105.96 69.30 96.00 69.65 67.51 67.82

60 124.95 178.72 74.70 269.5 77.64 73.11 73.09

failure criterion, Figure 4.3, GMC predicts well except slight deviation from 3D FEA.

The initial failure envelope generated by SwiftComp agrees well with the prediction

of 3D FEA. The prediction of mean field approaches (MT and DI) are not presented,
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because DIGIMAT does not support bidirectional stress load loading option. The

predictions obtained from SwiftComp∗ are close to the predictions of SwiftComp and

3D FEA as depicted in the figures for both failure criteria.
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Figure 4.2. Initial failure envelope of continuous fiber-reinforced
composite (maximum normal stress failure criterion for 60% vof)

The shear failure strength is also predicted using axial and transverse shear loading

conditions. In this case, the Tsai-Hill and maximum shear stress failure criteria are

used to predict the strength of the composite. The material properties listed in

Table 4.1 (type 2) are used for this analysis. Please note that the current version

of DIGMAT 5.1.1 does not support shear loading option, thus the results of mean

field approaches are omitted. Table 4.7 shows that the predictions of shear failure

strength, similar to the transverse normal loading, are dependent on stress disturbance

that decreases with fiber volume fractions. The composites with higher fiber volume

fractions sustain lower shear load. In this prediction, it is observed that the axial

shear failure strength of GMC is close to the predictions of SwiftComp and 3D

FEA for relative larger fiber volume fraction while the predictions of HFGMC are
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Figure 4.3. Initial failure envelope of continuous fiber-reinforced
composite (Tsai-Hill failure criterion for 60% vof)

significantly different. The predictions of transverse shear failure strength of GMC

remains to be same for all fiber volume fractions. On the other hand, HFGMC

predicts the transverse shear strength fairly well compared with 3D FEA. On the

contrary, SwiftComp shows excellent agreements with the predictions of 3D FEA.

It is also noticed that maximum shear stress and Tsai-Hill failure criteria produce

very close predictions. For this reason only Tsai-Hill failure criterion is presented

in Table 4.7. The predictions obtained from SwiftComp∗ are slightly greater than

the predictions of SwiftComp and 3D FEA for both axial and transverse shear stress

particularly for higher fiber volume fraction, but it shows large difference for lower

volume particularity for 1% which may result from higher stress gradient near the

interface that decay within short distance. Moreover, the combined shear loading

conditions, i.e., axial and transverse shear, can be used to generate the initial failure

envelope of the continuous fiber-reinforced composite. The outputs of mean field

approaches, GMC, and HFGMC are also omitted as the corresponding codes do not
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Table 4.7. Axial and transverse shear failure strength of continuous
fiber-reinforced composite using the Tsai-Hill failure criterion

Axial shear strength (MPa) Transverse shear strength (MPa)

Vof(%) GMC HFGMC SwiftComp∗ SwiftComp 3D FEA GMC HFGMC SwiftComp∗ SwiftComp 3D FEA

1 36.62 33.95 32.27 25.52 25.52 40.02 34.92 37.53 34.04 34.06

20 27.30 37.20 26.51 24.60 24.61 40.02 28.13 32.04 31.84 31.85

60 21.85 68.60 23.24 22.10 22.09 40.02 30.07 31.31 28.23 28.18

provide options for this type of loading conditions. Figure 4.4 shows that the initial

failure envelope of SwiftComp and 3D FEA show excellent agreement, while the

predictions obtained from SwiftComp* shows slight deviations from 3D FEA, which

results from the gradients of local stress.
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Figure 4.4. Initial failure envelope of axial and transverse shear of
continuous fiber-reinforced composites (for 60% vof)

Finally, maximum normal strain failure criterion is employed to predict the

strength of the continuous fiber-reinforced composite using strain or displacement

loading conditions. In this case, an interesting result is observed for the axial
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failure strain. All approaches including SwiftComp∗ and 3D FEA produce the same

predictions of axial failure strain approximated to be 0.019 for the material property

(type 2) irrespective of the fiber volume fractions. However, this is not observed to be

the same for the transverse failure strain prediction. Table 4.8 shows that the mean

field approaches and HFGMC overpredict the transverse failure strain compared to 3D

FEA. Moreover, Figure 4.5 shows that mean field approaches overpredict the initial

failure envelope nearly by more than 2.7 times compared to 3D FEA. GMC shows

a better prediction of the envelope, although not as good as SwiftComp compared

with 3D FEA. The predictions of nonlocal approach, i.e., SwiftComp∗, SwiftComp

and 3D FEA show excellent agreement. ε220 and ε330 represent the failure strain for

longitudinal and transverse directions, respectively.

Table 4.8. Transverse shear failure strength of continuous
fiber-reinforced composites using the maximum normal strain failure
criterion

Vof(%) MT DI GMC HFGMC SwiftComp∗ SwiftComp 3D FEA

1 0.019 0.019 0.0173 0.0174 0.0165 0.0149 0.0149

20 0.016 0.016 0.0103 0.0155 0.0100 0.0095 0.0098

60 0.009 0.009 0.0037 0.0152 0.0034 0.0033 0.0033

The nonlocal approach can also be used to predict the initial failure strength of

the composite with stress singularity risers such as cracks and small holes. In this

study, let two artificial finite length cracks (7.34% of the SG length) be introduced at

the fiber-matrix interface as shown in Figure 4.6 and also let the fiber volume fraction

be 50%. The mesh at the crack point is locally refined four times while the global

mesh remains the same. The initial failure strengths of the SG are predicted for each

local mesh refinement. Figures 4.7 and 4.8 indicate that for the pointwise local stress

field, i.e., SwiftComp and 3D FEA, the predictions of initial failure strength of the

composite are severely affected by the local mesh refinements, while for the nonlocal
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Figure 4.5. Initial failure envelope of continuous fiber-reinforced
composite using maximum normal strain failure criterion (for 60%
vof)

approach, i.e., SwiftComp∗, the initial failure strength is consistently predicted for

various local mesh refinement and also the prediction is slightly greater than 3D FEA

and SwiftComp for normal loading, which results from averaging the large stress at

the crack tip. However, for the transverse shear loading, the predictions of initial

failure strength are observed to be significantly different. This is due to higher stress

gradient, i.e., singularity, at the crack tips. As these stresses are numerical artifacts,

their effects are partially smoothed out by averaging over the characteristic length.

In another example, let a rectangular fiber be used to demonstrate a contact

point in SG as shown in the Figure 4.9. Let the fiber volume be 50%. In

this case also, for different local mesh refinements, the initial failure strengths are

evaluated at numerical integration points using SwiftComp and 3D FEA. However,

the predictions are found to be mesh dependent, while the nonlocal approach,
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Figure 4.6. SG with finite length artificial cracks
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Figure 4.7. Prediction of σ22 using the maximum normal stress failure criterion
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Figure 4.8. Prediction of σ23 using the Tsai−Hill failure criterion

SwiftComp∗, predicts the initial failure strength without being significantly affected

by local mesh refinements as shown in Figure 4.10.

4.1.2 Particle-Reinforced Composite

In this case, let a spherical inclusion with a desired fiber volume fraction

be embedded at the center of cuboidal matrix to be used as the SG for a

particle-reinforced composite. Let the local Cartesian coordinates be set at the center

of sphere. The material properties of fiber and the matrix listed in the Table 4.1 (type

2) are used here by assuming that the particle takes the properties of the fiber. For

the mean field approaches (MT and DI), an in-built model in DIGIMAT is used,

and for GMC, an in-built spherical particle-reinforced model with 343 elements, in

MAC/GMC4.0 is used. Further refining of the mesh does not have any significant

improvement on the outputs of GMC. The current version of MAC/GMC 4.0 does

not support 3D analysis for HFGMC, thus the predictions of HFGMC are omitted for
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Figure 4.9. SG with contact points
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Figure 4.10. Prediction of σ11 using the Tsai−Hill failure criterion

all 3D SG cases. A cuboidal SG with 7776 elements is used for SwiftComp and 3D

FEA. The results of 3D FEA analysis are obtained by using SOLID95 elements. The

initial failure strength of the particle-reinforced composite is predicted using mean

field approaches, GMC, SwiftComp, 3D FEA and SwiftComp∗ for different particle

volume fractions.

Table 4.9. Normal failure strength using the maximum normal stress
failure criterion

Vof (%) MT DI GMC SwiftComp∗ SwiftComp 3D FEA

10 90.00 91.00 42.50 40.90 39.02 39.20

20 96.96 99.96 36.00 35.87 33.89 33.63

40 109.96 127.47 29.10 23.64 21.76 21.89

50 116.51 148.81 24.40 14.30 12.02 11.28
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For maximum normal stress failure criterion, Table 4.9 shows that mean

field approaches significantly overestimate the normal failure strength of the

particle-reinforced composite approximately by more than 9 times compared with

3D FEA for 50% particle volume. GMC also significantly overpredicts compared

with 3D FEA, while SwiftComp shows an excellent agreement. The prediction using

the nonlocal approach, SwiftComp∗, is also observed to be greater than SwiftComp

and 3D FEA, which shows the presence of higher local field gradient in the matrix.

For the Tsai-Hill failure criteria, Table 4.10, the mean field approaches significantly

overpredict the normal failure strength of the composite approximately by more than 4

to 5 times, particularly for large particle volume fraction. GMC slightly overpredicts

compared to 3D FEA using the Tsai-Hill failure criterion while SwiftComp shows

excellent agreements. It is noticed that as particle volume increases, the initial

failure strength also decreases for GMC, SwiftComp, 3D FEA and SwiftComp∗ for

both maximum stress and Tsai-Hill failure criteria. This is due to the fact that as

particle size increases, the stress gradient also increases which may lead to the failure

of the composite. However, this is not true for the mean field approaches, because

the approaches are inherently incapable of predicting the local stress gradients which

mainly contribute to the failure of the composite. The overprediction of GMC might

be due to that fact that GMC does not accurately recover the local stress field [4,5].

The prediction of SwiftComp∗ for the Tsai-Hill failure criterion appears to be greater

than SwiftComp and 3D FEA compared to the maximum stress failure criterion. This

indicates that there may be higher multiaxial stress state in the composite due to the

interactions between the particle and the matrix.

The initial failure envelope, for multidirectional loading condition, is also

generated using the maximum normal stress failure criterion. Figure 4.11 shows

that GMC significantly overestimates the initial failure envelope while SwiftComp

shows an excellent agreement with 3D FEA. GMC provides a better estimate for the

initial failure envelope using the Tsai-Hill failure criterion as shown in Figure 4.12 in

comparison to its own predictions using the maximum normal stress failure criterion.
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Table 4.10. Normal failure strength of particle-reinforced composite
using the Tsai-Hill failure criterion

Vof (%) MT (MPa) DI (MPa) GMC (MPa) SwiftComp∗ (MPa) SwiftComp (MPa) 3D FEA (MPa)

10 91.80 92.91 47.00 48.02 46.50 45.54

20 100.41 104.32 42.50 41.96 39.97 40.12

40 117.84 138.23 36.50 39.17 34.67 34.88

50 126.98 164.48 31.20 29.00 24.89 23.53

The predictions of SwiftComp∗ are observed to be slightly greater than the predictions

of SwiftComp and 3D FEA.
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Figure 4.11. Initial failure envelope for normal multidirectional
loading condition (maximum normal stress failure criterion for 40%
vof)
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Figure 4.12. Initial failure envelope for normal multidirectional
loading condition (Tsai-Hill failure criterion for 40% vof)

4.1.3 Discontinuous Fiber-Reinforced Composite

Two variants of discontinuous fiber-reinforced composites are considered for

predicting the initial failure strength of the composite. The first one is an

aligned-regular array, where all the fibers are arranged in an aligned pattern. The

second one is an aligned-staggered array, where fibers are arranged in an offset pattern.

To generate the SG, first, let a quarter of circular fiber be embedded at the two

opposite corners of a rectangular shape SG. Let the SG be symmetric with respect

to its width and height. This arrangement produces rectangular shape array with

circular fiber at the center and quarter circular fibers at the four corners of the SG

as shown in Figures 4.13 and 4.16. Second, let the rectangular area of the SG be

generated based on the common relation, a = βb, where a is the width and b the

height of the SG and β =
√
3 for hexagonal array. Moreover, let the local Cartesian

coordinate be introduced as y = (y1, y2, y3) at the center of SG, where y1 is defined
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in the fiber direction. The fibers are generally shorter compared to the SG in y1

direction. For the detailed geometric constructions of discontinuous fiber-reinforced

composites, interested reader may refer to Ref. [159]. In this failure analysis, the fiber

volume fraction and fiber aspect ratio (length/diamater) are assumed to be 40% and

5, respectively. For 3D FEA, the SG is first modeled using plane element (Mesh200)

in 2D model and then, the corresponding 3D model is generated by extrusion of the

2D model based on the type of materials in SG. SwiftComp uses the mesh used for 3D

FEA. The failure analysis is conducted using material properties listed in Table 4.1

(type 2) for both types of discontinuous fiber-reinforced composites.

Aligned-Regular Array

For this example, a 3 × 44 × 42 (y1, y2, y3) subcell grid is used for GMC, and

20-noded elements are used for SwiftComp and 3D FEA. GMC and 3D FEA have

5,544 and 39,600 elements, respectively. The large difference in the element numbers

is due to the modeling nature of SG for GMC: it may have only three elements

in the y1 direction and further refining of the mesh in this direction does not

improve the output of GMC. SwiftComp and 3D FEA have equal number of elements.

Figure 4.13 shows the SG of SwiftComp and 3D FEA. The initial failure prediction

of the composite is conducted using various failure criteria and loading conditions.

Table 4.11 indicates that GMC underestimates the axial failure strength for the

maximum normal stress and Tsai-Hill failure criteria compared with the prediction

of SwiftComp and 3D FEA. GMC also shows poor agreement for transverse failure

strength using maximum normal stress criterion as shown in Table 4.12. However,

the transverse failure predictions of GMC show good agreement for the Tsai-Hill

failure criterion. The predictions of SwiftComp agree with the results of 3D FEA for

both axial and transverse loading conditions using both failure criteria, except for the

deviation of normal failure strain, see Tables 4.11 and 4.12. However, SwiftComp can

produce both the axial and transverse normal failure strains equivalent to 3D FEA
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Figure 4.13. SG of an aligned regular array discontinuous fiber-reinforced composite

if maximum principal strain is employed in 3D FEA. The prediction of SwiftComp∗

shows larger deviation from SwiftComp and 3D FEA for all failure criteria compared

with continuous fiber-reinforced composites. This shows that there is larger local field

gradients in the constituent of discontinuous fiber-reinforced composites in all three

loading directions. It is also noted that the prediction of maximum normal stress

failure criteria is found to be conservative compared with other failure criteria.

Table 4.11. Axial aligned regular array discontinuous fiber-reinforced composite

Axial failure strength strength

Approach GMC SwiftComp∗ SwiftComp 3D FEA

Max. Normal Stress (MPa) 41.28 55.51 49.59 50.09

Tsai-Hill (MPa) 50.92 86.93 77.66 78.30

Max. Normal Strain 0.0025 0.0031 0.0021 0.0016

Figures 4.14-4.15 show that initial failure envelopes, using different loading

conditions. GMC poorly predicts the failure strength for both maximum normal stress
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Table 4.12. Transverse failure strength of aligned regular array
discontinuous fiber-reinforced composite

Transverse strength 2 Transverse strength 3

Failure Criteria GMC SwiftComp∗ SwiftComp 3D FEA GMC SwiftComp∗ SwiftComp 3D FEA

Max.Normal Stress (MPa) 63.70 66.78 56.65 57.42 49.50 51.41 45.69 44.38

Tsai-Hill (MPa) 58.10 77.83 58.15 59.00 57.54 60.03 56.65 57.62

Max. Normal Strain 0.0087 0.0075 0.0045 0.0035 0.0062 0.0063 0.0042 0.0032

and Tsai-Hill failure criteria. On the contrary, the predictions of SwiftComp show very

good agreement with 3D FEA for both failure criteria and loading conditions. The

poor predictions of GMC might be due to its poor capability of predicting local fields

that results from the lack of axial-shear coupling. The predictions of SwiftComp∗ for

bidirectional loading are also observed to be greater than other approaches, which

result from higher local stress gradients in the constituents of the composite.
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Figure 4.14. Initial failure envelope for axial and transverse loading
(Maximum normal stress failure criterion for 40% vof).
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Figure 4.15. Initial failure envelope for axial and transverse loading
(Tsai-Hill failure criterion for 40% vof).

The axial shear strengths S12 and S13, and the transverse shear strength S23 are

also analyzed using Tsai-Hill failure criterion. Table 4.13 shows that GMC predicts

well for S12 but poorly estimates S13 and S23 compared with SwiftComp and 3D

FEA. The predictions of SwiftComp∗ are found to be greater than the predictions of

SwiftComp and 3D FEA. This result is expected due to local stress disturbances in

the constitutes of the composite.

Table 4.13. Axial and transverse shear failure strengths of aligned
regular array discontinuous fiber-reinforced composite (40% of vof).

Approaches S12 S13 S23

GMC 26.19 33.12 38.80

SwiftComp∗ 27.39 24.29 32.42

SwiftComp 27.02 19.83 20.80

FEA 27.39 19.95 20.93
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Aligned-Staggered Array

Aligned staggered array type of discontinuous fiber-reinforced composite is similar

to the regular aligned array but, in this case, the fibers in the SG are arranged in a

staggered pattern, i.e., fibers overlap within the SG. Let 76% of fiber length overlaps

within the SG for this analysis. A 6 × 42 × 42 (y1, y2, y3) subcell grid is used for

GMC, 34,608 20-noded elements are used for SwiftComp and 3D FEA. The SG of

FEA/SwiftComp is shown in Figure 4.16. GMC has a similar SG with cuboidal

meshing pattern.

The predictions of initial failure strengths are performed using different failure

criteria. Table 4.14 indicates that GMC insufficiently approximates the axial failure

strength using all failure criteria. The predictions of SwiftComp unexpectedly show

much deviation from 3D FEA although they are better than GMC. This difference

may be due to the difference between the maximum normal strain and maximum

principal strain. For this case, it shows their the difference of the two strains is

higher. Failure is evaluated using principal strain in SwiftComp and maximum normal

strain in 3D FEA. The predictions of GMC for the transverse failure strength show

relatively better agreements with 3D FEA. While the prediction of SwiftComp shows

an excellent agreement for transverse failure strength as shown in Table 4.15. The

prediction of SwiftComp∗ is significantly greater than the predictions of SwiftComp

and 3D FEA, which show significant local stress variations in each constituent of the

composite.

Table 4.14. Axial and transverse failure strengths of aligned staggered
array discontinuous fiber-reinforced composite

Axial strength 1

Failure Criteria GMC SwiftComp∗ SwiftComp FEA

Max. Normal Stress (MPa) 49.50 97.61 67.96 61.56

Tsai-Hill (MPa) 59.40 115.11 87.36 79.81

Max. Normal Strain 0.0046 0.0039 0.0027 0.0018
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Figure 4.16. SG of aligned staggered array discontinuous fiber-reinforced composite.

Table 4.15. Transverse failure strengths of aligned staggered array
discontinuous fiber-reinforced composite

Transverse strength 2 Transverse strength 3

Approach GMC SwiftComp∗ SwiftComp FEA GMC SwiftComp∗ SwiftComp FEA

Max. Normal Stress (MPa) 53.35 60.58 47.29 47.50 48.00 60.92 43.97 44.50

Tsai-Hill (MPa) 61.38 76.99 56.40 57.66 56.84 63.9 57.52 57.60

Max. Normal Strain 0.0073 0.0060 0.0041 0.0034 0.0058 0.0055 0.0052 0.0039

The initial failure envelop is also generated for combined loading conditions.

Figures 4.17 and 4.18 show that GMC well predicts the initial failure envelopes

for both cases except for the large deviation for larger values of opposing loads for

maximum normal stress failure criterion. The predictions of SwiftComp agree well

with 3D FEA, while the predictions of SwiftComp∗ are greater than the predictions

of SwiftComp and 3D FEA for all the cases. This is due to the higher local stress

gradients in each constituent of discontinuous fiber-reinforced composites particularly

in the axial direction.

The shear failure strength prediction of GMC, Table 4.16, is observed to be

overpredicted using Tsai-Hill failure criterion compared with SwiftComp and 3D FEA,

for S13 and S23, while it slightly underpredicts for S12. On the contrary, SwiftComp
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Figure 4.17. Initial failure envelope for transverse loading (maximum
normal stress criteria vof 40%)

shows excellent agreements with the predictions of 3D FEA for axial shear failure

strength. However, SwiftComp∗ overpredict all the transverse shear failure strengths

approximately by 40% compared with 3D FEA. This shows the extent of the variations

of local fields in each constituent of the composite.

Table 4.16. Shear failure strength of aligned staggered array
discontinuous fiber-reinforced composite using the Tsai-Hill failure
criterion (40% of vof)

Approaches S12 S13 S23

GMC 29.70 32.67 35.28

SwiftComp∗ 31.76 31.55 31.45

SwiftComp 24.51 23.74 22.93

FEA 24.99 24.59 22.25



www.manaraa.com

90

-1.50 -0.75 0.00 0.75 1.50

-2

-1

0

1

2

N
or

m
al

iz
ed

Tr
an

sv
er

se
S

tre
ss

(σ
33

/σ
33

0 
)

Normalized Transverse Stress (σ22/σ220)

GMC
SwiftComp
FEA
SwiftComp*

Figure 4.18. Initial failure envelope for transverse loading (Tsai-Hill vof 40%)

4.1.4 Woven Composite

A woven composite can be modeled as depicted in Figure 4.19. The ellipsoidal

cross-section of major axis radius, c, and minor axis radius, c
4
, elliptical curvature

radius, r = 2.5c, and also matrix thickness of c
8
are assumed on the top and bottom

of the side of the SG. The ellipsoidal cross-section center to center distance is 2c. The

overall SG length, width and height are 4c, 4c and 5c
4
, respectively. In this failure

analysis, the constant c is assumed to be 2. GMC uses the same shape of SG with a

cuboidal meshing pattern. A single-step GMC approach is employed for this analysis.

A 64 subcell grid is used for GMC. The basic type of woven microstructure is used from

DIGIMAT for mean field approaches (MT and DI). The SG of 3D FEA/SwiftComp

is meshed to have 18, 432 elements. It is obvious to see large element difference

between the GMC and FEA/SwiftComp. This is because GMC inherently uses only

cuboidal element type in the SG and further meshing of the subcell does not improve

accuracy for the predicted values. The warp and weft are assumed to have the material
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properties of the fibers listed in Table 4.1 under type 1 and type 2, respectively. The

matrix of woven is assumed to have the matrix in type 2 of the material properties.

The volumes of warp, weft and the matrix are obtained to be 25.95%, 25.95% and

48.10%, respectively.

Figure 4.19. SG of woven composite)

Table 4.17 shows that the mean field approaches significantly overpredict the

failure strength of the composite in directions 2 (σ22) and 3 (σ33) using maximum

normal stress, Tsai-Hill and maximum normal strain failure criteria. Conversely,

the mean field approaches, underpredict the failure strength in direction 1 (σ11)

for maximum normal stress and Tsai-Hill failure criteria. Similarly, GMC also

significantly overestimates the failure strengths for all failure criteria except for the

failure strength in direction 3 (σ33), which shows close predictions for Tsai-Hill failure

criterion compared with SwiftComp and 3D FEA. On the contrary, SwiftComp shows

relatively good agreements for both Tsai-Hill and maximum normal strain failure

criteria. The differences of SwiftComp and 3D FEA may be due to the failure

evaluating method, where SwiftComp uses principal stress while 3D FEA adopts
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maximum normal stress. SwiftComp can produce the failure normal strains of the

woven composite that agree well with the predictions of 3D FEA, if the principal

strain is used for evaluation of failure. However, as shown in Table 4.18, the predicted

output using maximum strain is much lower than the predictions of principal strain

using SwiftComp. The predictions of SwiftComp∗ are significantly greater than the

predictions of SwiftComp and 3D FEA, which indicates higher local field gradient in

the composite.

Table 4.17. Failure strength of woven composite

Maximum normal stress failure criterion Tsai-Hill failure criterion

Approach σ11(MPa) σ22(MPa) σ33(MPa) σ11 (MPa) σ22 (MPa) σ33 (MPa)

MT 465.41 103.57 465.41 554.01 162.35 592.52

DI 492.50 140.92 592.52 592.52 204.55 592.52

GMC 1046.64 83.30 1046.64 1094.40 159.60 194.40

SwiftComp∗ 867.17 60.10 285.60 827.22 98.5 268.19

SwiftComp 728.24 51.97 225.10 769.81 88.60 209.18

FEA 776.61 53.00 248.40 774.50 89.00 211.51

Table 4.18. Failure strain for woven composite

Maximum normal strain failure criterion

Approach strain ε11 strain ε22 strain ε33

MT 0.0131 0.0130 0.0131

DI 0.0133 0.0132 0.0133

GMC 0.0193 0.0101 0.0193

SwiftComp∗ 0.0125 0.0028 0.0036

SwiftComp 0.0115 0.0024 0.0028

FEA 0.0051 0.0024 0.0018
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The initial failure envelope for transverse loading, i.e., σ22 and σ33, as depicted

in Figure 4.20, shows that GMC significantly overpredicts the initial failure envelope

using maximum normal stress failure criterion approximately by more than 54%.

Moreover, Figure 4.21 shows that the prediction of GMC overpredicts the initial

failure envelope compared with 3D FEA and SwiftComp approximately by more than

10% for Tsai-Hill failure criterion.

This failure analysis shows significant deviations of mean field approaches and

GMC from SwiftComp and 3D FEA compared to other examples. This indicates that

the average local fields in the composite are not good enough to approximate the local

field variations in a complex microstructure. The capability of local field prediction

is once again found to be crucial for analyzing the initiation of failure at micro-scale

level, particularly, for complex microstructures like a woven composite. The inability

of GMC for prediction of failure strength may also be due to the cuboidal shape of

the subcell as well as its inherent lack of axial-shear coupling effect. The cuboidal

shape may also affect GMC not to accurately recover the local fields along the wave

of the warp, the weft and the matrix of the composite. In general, it is noticeable that

SwiftComp can predict the initial failure envelope of woven composites equivalent to

3D FEA.

The predictions of SwiftComp∗ are significantly greater than the predictions

of SwiftComp and 3D FEA. This is mainly due to the complex geometry of

the microstructures, the local fields are highly variable due to the interactions of

constituents with different properties.

4.2 Imperfect Interface Analysis

A constitutive model that allows a linear traction-displacement model is

incorporated into SwiftComp to analyze the effect of imperfect interface on

the effective properties and initial failure strength of heterogeneous materials.

This analysis is performed using several representative examples of heterogeneous
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Figure 4.20. Initial failure envelope for σ22 and σ33 (maximum normal
stress failure criterion)

materials. The predictions of SwiftComp are compared using exact solutions for

binary/layered composite, the upper and lower bounds predictions in Ref. [147] for

particle-reinforced composite, and 3D FEA for other examples. The results of 3D

FEA are obtained using interface element (INTER204) in ANSYS 15.1 by employing

periodic boundary conditions. The initial failure analyses are also performed using

the material properties listed in Table 4.1 (type 2).

4.2.1 Binary Composite

In this section, let the properties of layer 1 and layer 2 be represented by the

properties listed in Table 4.1 (type 2), respectively. For 3D FEA, the SG is meshed

to have 6400 elements (ANSYS SOLID95). Let the tangential and normal interfacial

stiffness be related as D̄II = 8 D̄I and D̄II = D̄III . Eq. (3.74) shows the prediction

for the longitudinal elastic moduli, E1 and E2, are not affected by the interfacial
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Figure 4.21. Initial failure envelope for σ22 and σ33 (Tsai-Hill failure criterion)

stiffness. Similarly, all Poisson’s ratios (ν12, ν13, ν23) are not affected by interfacial

stiffness, see Eqs. (3.78) and (3.79). Moreover, Eq. (3.75) indicates that G12 is

independent of interfacial stiffness. The predictions of SwiftComp and 3D FEA,

for E1, E2, G12 and all Poisson’s ratios, are also consistent with the predictions of

exact solution. However, in Figure 4.22, the predictions of transverse elastic modulus

E3 are significantly affected by the interfacial stiffness D̄I . As the interfacial stiffness

increases, the prediction of imperfect interface converges to the predictions obtained

using perfect interface assumption. It is also found that interfacial stiffness D̄II

and D̄III do not affect the transverse elastic modulus E3. The predictions of exact

solution, SwiftComp and 3D FEA show excellent agreements.

Figure 4.23 shows that the prediction of elastic shear modulus G23 is significantly

affected by the interfacial stiffness D̄III . It is also observed that as interfacial stiffness

increases, the prediction of shear modulus G23 converges to the prediction of perfect

interface. In this case, it is also noted that the interfacial stiffness D̄I and D̄II do not
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Figure 4.22. Prediction of transverse elastic modulus E3

affect the prediction of the transverse shear modulus G23. Similarly, in Eq. (3.76),

the prediction of shear modulus G13 is found to be affected by interfacial stiffness

D̄III . This prediction is similar to the one obtained for the shear modulus G23. The

main difference is that G13 is affected by D̄III while G23 is by D̄II . For both cases,

the predictions of exact solutions and 3D FEA show excellent agreement [160].

For more general cases, let the layers exhibit orthotropic or monoclinic properties,

obtained by assigning different orientations for material properties listed in Table 4.19.

First, let us assume the binary composite be made of two cross plies, [0/90] and also let

D̄I be equal to 0.1 GPa/m, and D̄II = D̄III be equal to 0.8 GPa/m. Table 4.20 shows

the predictions of exact solution obtained using Eq. (3.81) and 3D FEA. It shows

that exact solution and 3D FEA are in an excellent agreement. Although all the

components of effective stiffness matrix except C∗
66 are affected by interfacial stiffness

as shown in Eq. (3.81), the effective compliance matrix of [0/90] is not observed to

be affected in a similar way as shown in Eq. (4.1)
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Figure 4.23. Prediction of elastic shear modulus G23

E1 (GPa) E2 = E3 (GPa) G23 (GPa) G12 = G13 (GPa) ν12 = ν13 ν23

255 15 7 15 0.20 0.07

Table 4.19. List of material properties

S∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

187
22485

− 187
899437

757
645750

0 0 0

187
22485

− 757
645750

0 0 0

1201679
18081000

+ 1
DI

0 0 0

SYMM 11
105

+ 109

DII
0 0

11
105

+ 109

DIII
0

1
15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

10−9. (4.1)
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Table 4.20. Effective properties for [0/90] and [±45] layers

Approach E1 = E2 (GPa)E3 (GPa)G13 = G23 (GPa)G12 (GPa) ν12 ν13 = ν23

[0/90] Laminate

Exact 120.46 0.09 0.73 15.00 0.025 0.140

3D FEA 120.22 0.08 0.72 15.00 0.025 0.140

3D FEA/Exact∗ 120.46 15.00 9.54 15.00 0.025 0.140

[±45] Laminate

Exact 48.26 0.09 0.73 5.87 0.609 0.056

3D FEA 48.14 0.08 0.72 5.85 0.605 0.052

3D FEA/Exact∗ 48.26 15.00 9.45 5.87 0.609 0.052

∗ Perfect Interface.

The corresponding stiffness matrix can also be obtained by inverting the

compliance matrix, where one can see C∗
11, C∗

22, C∗
12, C∗

16 and C∗
26 as function of

interfacial stiffness. This is consistent with Eq. (3.81). Eq. (4.1) shows E3, G23, and

G13 varies with the interface stiffness D̄I , D̄II and GIII , respectively. Similarly, we

can also obtain the prediction of [±45] laminate. Table 4.20 also shows the predictions

of exact solution for [±45] are in an excellent agreement with the 3D FEA.

The effect of the interfacial stiffness on the failure strength of the binary composite

is also analyzed using maximum normal stress and maximum shear stress failure

criteria. As it can be seen from the Figures 4.24 and 4.25, it is clear to notice

that the failure strength is considerably dependent on the interfacial strength of the

composite. Both SwiftComp and 3D FEA show an excellent agreement with exact

solutions. For this case, the normal interfacial strength is assumed to be equal to the

strength of layer 1. The tangential interfacial strengths are approximated in a similar

way that the interfacial stiffnesses are related. This failure analysis shows that the

interfacial stiffness mainly controls the failure of the composite, i.e, failure usually

initiates at the interface.
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Figure 4.24. Predictions of failure strength σ33 using the maximum
principal stress failure criterion.
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4.2.2 Continuous Fiber-Reinforced Composite

For this case, the SG, Figure 4.1, is used to analyze the effect of imperfect interface.

The material properties of the fiber and matrix are listed in the Table 4.21. In this

analysis, the fiber volume fraction is assumed to be 40%. The interfacial debonding

Table 4.21. Material properties for imperfect interface analysis.

Mat E (GPa) ν

Fiber 379.3 0.10

Matrix 68.3 0.30

can happen in three possible directions at fiber and matrix interface: 1) normal to the

contacting surface that corresponds to mode I failure with the interface stiffness D̄I ; 2)

tangent to the interface parallel to the fiber direction which corresponds to the mode

II failure with the interface stiffness D̄II ; and 3) tangent to the interface and normal

to the fiber directions that corresponds to mode III failure with the interface stiffness

D̄III . These modes of failure are used to analyze the effect of imperfect interface on

the elastic effective properties of the composite. Let the interface stiffness be related

to each other as, i.e, D̄II = 5D̄I and D̄II = D̄III .

The predictions of this analysis show that the axial effective elastic modulus E1

is negligibly affected by the interfacial stiffness (not shown here), while the effective

elastic modulus E2 is significantly dependent on the normal interfacial stiffness D̄I as

depicted in Figure 4.26. It is also noticed that the interfacial stiffness D̄II does not

influence the predictions of transverse elastic modulus. However, Figure 4.27 shows

that the prediction of effective transverse shear modulus G23 is found to be highly

affected by the interfacial stiffness D̄III .

Moreover, it is found to be important to analyze the influence of the interfacial

stiffness on the effective Poisson’s ratio of the composite. In Figure 4.28, the effective

Poisson’s ratio ν12 is observed to be larger for imperfect interface with negligible

interfacial stiffness. This shows that the weaker the interface is, the larger the
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Figure 4.26. Predictions of effective modulus E2.
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global strain in the transverse direction. For instance, for longitudinal load along

the fiber direction, both global axial strain ε11 and global transverse strain ε22 are

slightly affected. This results in the larger Poisson’s ratio ν12 (− ε22
ε11

). However, as

the interfacial stiffness increases, the effective Poisson’s ratio ν12, converges to the

perfect interface predictions. Conversely, the transverse effective Poisson’s ratio ν23

is highly influenced by the interfacial stiffness. For example, for lower interfacial

stiffness, let a small transverse global load be applied on the SG. Then, the global

strain ε22 is significantly affected, i.e., the strain increases, in the direction of the

load while the strain in the unloaded direction ε33 is slightly affected. This results in

reducing effective Poisson’s ratio ν23. As the interfacial stiffness increases, the ratio

ε33 to ε22, i.e., ν23, further decreases. This is because the increase of the stiffness

decreases the strains in both directions, but the extent of decrease in ε33 is much

greater than that of ε22 which in turn leads to considerable decrease of effective

transverse Poisson’s ratio ν23 as depicted in Figure 4.28. Further increase in the

interfacial stiffness negligibly affect ε33 while ε22 further decreases. Consequently,

this results in increasing the effective transverse Poisson’s ratio ν23 and finally it

converges to the prediction of perfect interface. The predictions of SwiftComp and

3D FEA are in a perfect agreement for both axial and transverse Poisson’s ratios.

Finally, the initial failure strength of the continuous fiber-reinforced composite is

analyzed using the material properties listed in Table 4.1 (type 2). For all interfacial

failure analysis, the normal interfacial strength is approximated to be the same as

the strength of the matrix. The other interfacial strengths can be obtained using the

normal interfacial strengths based on the interfacial stiffness relationship. It is learned

that the failure strength in axial direction is negligibly affected due to interfacial

stiffness, while the failure in the transverse direction is significantly dependent on

the interfacial stiffness as depicted in Figures 4.29 and 4.30 for the maximum normal

stress and Tsai-Hill failure criteria, respectively. In this case, the interface is assumed

to undergo negligible damage. Figure 4.31 also shows that the transverse shear
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Figure 4.28. Predictions of effective Poisson’s ratio ν12 and ν23.

failure strength is dependent on the interfacial stiffness. This analysis shows that

the interfacial stiffness can significantly affect the strength of the composite.

4.2.3 Particle-Reinforced Composite

The SG described for failure analysis of particle-reinforced composite is assumed

for this case as well. The inclusion particle and the matrix are assumed to have

an elastic modulus 703.45 GPa and 206.94 GPa, respectively. The corresponding

Poisson’s ratios are 0.2199 and 0.2999, respectively. The interface stiffness, in this

case, is assumed to have a relation, D̄I = 5D̄II , and D̄II = D̄III , and
G2

aD̄II
= 10,

where G2 is the shear modulus of the matrix, and a is the radius of the sphere. The

elastic effective properties are predicted using upper and lower bounds in Ref. [147].

The upper and lower bounds for the effective elastic modulus, E, are found to be

187.86 GPa and 61.6 GPa, respectively. Similarly, for the effective shear modulus,

G, the upper and the lower bounds are predicted to be 75.71 GPa and 22.50 GPa,
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Figure 4.29. Predictions of failure strength for σ22 using the maximum
normal stress failure criterion.

respectively. The current predictions using SwiftComp and 3D FEA are 140.85 GPa

and 142.63 GPa for effective elastic modulus, respectively. SwiftComp and 3D FEA

also predict the effective shear modulus to be 51.89 GPa and 55.61 GPa, respectively.

The slight deviation of SwiftComp from 3D FEA is due to the limitation of the

adopted interface element (INTER204) that can not properly capture the change

in effective shear G12 due to imperfect interface. It appears that the prediction of

SwiftComp and 3D FEA for both elastic and shear moduli are within the proposed

upper and lower bound values. In general, the predictions of SwiftComp and 3D FEA

compared with the upper and lower bounds of elastic moduli are analyzed for various

interfacial stiffness. Figures 4.32 and 4.33 show that the prediction of both effective

elastic and shear moduli are observed to be much closer to the upper bounds.

The lower bound predictions of Hashin in Ref. [147] are close to zero for small

interfacial stiffness. This does not seem reasonable. For instance, for completely

debonded case, which simulates no interfacial stiffness, the prediction of effective the
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Figure 4.30. Predictions of failure strength for σ22 using the Tsai-Hill
failure criterion.

longitudinal and shear moduli should be closer to the properties of cuboidal matrix

with void, i.e., the void is equal to the volume of the particle.

The failure strength of the particle-reinforced composite is also analyzed for

different interfacial stiffnesses. The interfacial strength is approximated in the

same way as continuous fiber-reinforced composite. Figure 4.34 indicates that the

predictions of failure strength using Tsai-Hill failure criterion show that the failure

strength of the composite can be compromised due to the imperfect interface. It

may lose up to 25% of its original strength with prefect interface. The deviations of

the prediction of SwiftComp and 3D FEA for lower interface stiffness may be due to

the effect of the interfacial stiffness, D̄II , that is not well captured using INTER204

elements in ANSYS.
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Figure 4.31. Predictions of failure strength for σ23 using the Tsai-Hill
failure criterion.

4.2.4 Discontinuous Fiber-Reinforced Composite

The SG in Figures 4.13 and 4.16 will also be used for imperfect interface analysis.

The material properties for both types of discontinuous fiber-reinforced composites

are listed in Table 4.22. In both examples, it is assumed that the interface undergoes

infinitesimal displacement jumps.

Table 4.22. Material property (Ref. [159]).

Mat E (GPa) ν

Fiber 300 0.17

Matrix 10 0.33
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Figure 4.32. Predictions of effective elastic modulus E.
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Figure 4.33. Predictions of effective shear modulus G.
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Figure 4.34. Predictions of failure strength of particle-reinforced
composite σ using the Tsai-Hill failure criterion.

Aligned-Regular Array

The SG of SwiftComp and FEA is shown in Figure 4.13. In this analysis, 20-noded

elements are used for SwiftComp and 3D FEA with 10,624 elements. Assume D̄II =

5D̄I and D̄II = D̄III . The predictions of effective properties with various interfacial

stiffnesses are performed using SwiftComp and 3D FEA. Figure 4.35 shows that the

predictions of elastic modulus E1 using SwiftComp show a slight deviation from 3D

FEA. This deviation may be due to the interfacial stiffness in the model II direction,

that the current interfacial element does not rigourously capture. In another analysis,

Figures 4.36 and 4.37 indicate that SwiftComp and 3D FEA agree well in estimating

the effects of interfacial stiffness on the effective elastic moduli E2 and E3.

The predictions of both effective axial and transverse shear moduli are also

performed for different interfacial stiffnesses. Figure 4.38 shows that the axial shear

modulus predictions of SwiftComp show slight deviation from 3D FEA. This deviation
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Figure 4.35. Predictions of effective elastic modulus E1
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Figure 4.36. Predictions of effective elastic modulus E2.
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Figure 4.37. Predictions of effective elastic modulus E3.

may be due to the contributions of interfacial stiffness in mode II direction that are not

well predicted using INTER204 element. Figure 4.39 indicates that the predictions of

SwiftComp for the effective transverse shear modulus agree well with the prediction of

3D FEA. In general, the imperfect interface analyses for discontinuous fiber-reinforced

composite suggest that the stiffness in mode II direction does not affect the predictions

of the transverse axial E2 and transverse shear modulus G23. However, it significantly

affects axial elastic modulus E1 and axial shear modulus G12.

In Figure 4.40, the effects of interfacial stiffness on the effective Poisson’s ratio

are also analyzed. SwiftComp and 3D FEA show good agreement except for the

small deviation for small interfacial stiffness. As described for the continuous

fiber-reinforced composite, the effective axial Poisson’s ratio is higher for lower

interfacial stiffness due to difference in the global strains in the two directions, i.e., ε22
ε11

,

this ratio is higher for lower stiffness. As stiffness increases, both the global strains

reduce and their overall ratio will go down as depicted in Figure 4.40. However as

the stiffness keeps on increasing, it does not have significant effect on ε22 but ε11
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further reduces. This results in the increase of ε22
ε11

and finally converges to the perfect

interface prediction. The same holds for transverse effective Poisson’s ratio but in this

case ν23 is relatively smaller for lower interfacial stiffness as discussed for continuous

fiber-reinforced composite.
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Figure 4.38. Predictions of effective axial shear modulus G12.

The effect of imperfect interface on strength of the composite is also analyzed.

Figure 4.41 shows that imperfect interface considerably affects the failure strength

of discontinuous fiber-reinforced composite. It is also observed that the prediction

of SwiftComp and 3D FEA has a slight difference which may be due to the effect of

interfacial stiffness D̄II that are not well predicted using INTER204 element.

Aligned-Staggered Array

The SG of SwiftComp and 3D FEA is shown in Figure 4.16 and it is meshed to

have 9, 120 elements for SwiftComp and 3D FEA. In this case, it is assumed that the

interfacial stiffness D̄II = D̄III = 5D̄I . From the analyses, it is observed that the
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Figure 4.39. Predictions of effective transverse shear modulus G23.
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Figure 4.40. Predictions of effective Poisson’s ratio ν23.
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Figure 4.41. Predictions of failure strength, σ22.

effective properties are significantly affected by imperfect interface. Figures 4.42, 4.43

and 4.44 show that the predictions of E1, E2 and E3 are affected by interfacial stiffness.

For all E1, E2 and E3, SwiftComp and 3D FEA are in an excellent agreement.

Figures 4.45 and 4.46 show that the axial and transverse shear moduli are also

significantly dependent on the interfacial stiffness. The predictions of SwiftComp

and 3D FEA show excellent agreement.

As described for the continuous fiber-reinforced composite, the effective axial

Poisson’s ratio is higher for smaller interfacial stiffness due to difference of global

strains in the two directions, i.e., ν12 = ε22
ε11

. The up and downs of the effective

Poisson’s ratios are due to the relative changes of global strains in the corresponding

directions as discussed for the continuous fiber-reinforced composite and the aligned

regular array as well. Figure 4.47 shows that predictions of Poisson’s ratios of

SwiftComp is in a very good agreement with 3D FEA except slight deviation for
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Figure 4.42. Predictions of effective elastic modulus E1.
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Figure 4.43. Predictions of effective elastic modulus E2.
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Figure 4.44. Predictions of effective elastic modulus E3.
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Figure 4.45. Predictions of effective axial shear modulus G12.
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ν23 for smaller interface stiffness. This deviation is due to the inability of INTER204

to capture the effects of D̄II .
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Figure 4.46. Predictions of effective transverse shear modulus G23.

4.2.5 Woven Composite

The SG of woven composite used for failure analysis (Figure 4.19) is also used

for analyzing imperfect interface. The SG of 3D FEA/SwiftComp is meshed to have

8, 640 elements. The material properties and the corresponding volume of warp,

weft and the matrix are listed in Table 4.23. The interfacial stiffness is related as

D̄II = 5D̄11 = D̄III for this case. It is also assumed that the interfacial stiffness

between different materials (warp, weft and matrix) are the same. The effects of

interfacial stiffness on the effective properties of woven composite are analyzed for

various interfacial stiffnesses.
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Figure 4.47. Predictions of effective Poisson’s ratios ν12 and ν23.

Table 4.23. Material property (Ref. [159])

Mat E (GPa) ν vol(%)

Warp 130 0.30 25.95

Weft 86 0.22 25.95

Matrix 4.30 0.34 48.10

Figures 4.48,and 4.49 show that interfacial stiffness severely affects the effective

properties of woven composite. The predictions of SwiftComp and 3D FEA show

excellent agreements.

Figure 4.50 shows that the predictions of SwiftComp and 3D FEA are in good

agreement for Poisson’s ratio, ν13, except a slight deviation for lower interfacial

stiffness. This deviation could be due to the effect of the interface stiffness that

corresponds to mode II failure that 3D FEA insufficiently predicts its effect as

discussed for other examples. From the imperfect interface analysis of this composite,
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it is also noticed that the introduction of imperfect interface with different material

properties will make the woven composite to exhibit anisotropic material property,

i.e, the stiffness matrix is fully populated for relativity smaller stiffness, however, as

the interfacial stiffness increases orthotopic material property will be obtained.
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Figure 4.48. Prediction of E1.

4.3 Progressive Failure Predictions

In progressive damage analysis, after each static or cyclic global loading, the

homogenization and dehomogenization analyses are carried out. This is followed by

evaluation of damage at each numerical integration point using the nonlocal approach

based on Eq. (3.26). If f̄p > 0, plasticity occurs, then the evolution of plastic strain

is obtained by consistency equations, i.e., f̄p = 0, ˙̄fp = 0. Similarly, if f̄d > 0,

the damage evolution is estimated using incremental algorithm based on consistency

conditions, i.e., f̄d = 0, ˙̄fd = 0. The stiffness matrix in Eq. (3.42) or Eq. (3.44) are
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Figure 4.49. Prediction of E3.

then updated for each loading. The proposed approach is summarized in the flow

chart shown in Figure 4.51 and 4.52.

Material Constants

The material constants, σy, Q, and b in Eqs. (3.19) and (3.20) and also Bo, L,

and o in Eqs. (3.26) and (3.30) are obtained by calibrating with experimental data

for monotonic loading. Once the material constants are obtained. The prediction

either for monotonic or fatigue loading of any heterogeneous materials with same

constituents can be performed.

For example, let a cuboidal SG with 10% particle volume fraction be used. In this

case, monotonic stress-strain experimental data of the composite are available [112].

Thus, the material constants both for plasticity σy, b, and Q, and also for damage

analysis Bo, L, and o are calibrated by numerically simulations. Let the material
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Figure 4.50. Prediction of ν13.

constant in Eq. (3.27) cd be equal to 0, and H in Eq. (3.19) is assumed to be diagonal

fourth-order tensor with all its components equal to 1. Moreover, critical damage Dc

is assumed to be 0.35 and 0.50 for the fiber and the matrix, respectively. And also, one

can assume that both materials experience plasticity and damage. The yield limit of

the particle is approximated, while the yield limit of the matrix is measured as shown

in Table 4.24. Consequently, material constants for both plasticity and damage can

be approximated using the yield and damage threshold limits of the constituents of

the composite, respectively.

The calibration of the material constants can be performed as follows. The

SG is loaded monotonically followed by evaluation of yielding at each integration

point based on the yield limits of the constituents. Once yield is initiated, material

constants σy, b, and Q iteratively calibrated based on the experimental data, i.e.,

various trial values are used to fit to the experimental data. In this case, i.e., particle
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Figure 4.51. Summary of the proposed approach for progressive and
fatigue failure predictions (DPA)

reinforced composite, it is reasonable to assume that the matrix control the failure

of the composite. Following an intensive numerical simulation, σy, b, and Q can be

obtained. To obtain other constants, we need to load the SG. As load increases, again,

one should define maximum plastic strain beyond which the material experiences

damage. Assume the strain is reached at a specific stress beyond the yield limit.

Let the specified stresses be approximately 2869 MPa and 208 MPa for the fiber and

the matrix, respectively. These specified stresses are used for obtaining the damage
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Figure 4.52. Summary of the proposed approach for progressive failure
predictions FCA.

threshold level Bo for both particle and matrix using Eq. (3.26). If ḟd < 0, no damage.

Thus, let the value of Bo be selected for infinitesimally small positive values of ḟd < 0

which results in infinitesimally small damage in each constituent. Please note that

there is no further plasticity analysis at a material point once damage is initiated.

Once the Bo of the particle and the matrix are estimated, L and o remain to be

obtained. They are also iteratively obtained using numerical simulations by fitting

the predicted value with experimental data for both constituents. The characteristic

length l in Eq. (3.26) is assumed to be 0.1 for this example. The estimated material
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Figure 4.53. Stress-strain curve for particle-reinforced composite.

constants are shown in Table 4.24. These constants are then used to predict the

stress-strain curve for the uniaxial loading. As shown in Figure 4.53, the predicted

results show good agreement with the experimental data.

The calibrated data can also be used to estimate fatigue life of the composite

Table 4.24. Material constants for failure analysis (Ref. [112])

Materials E (GPa) ν σy (GPa) b Q (GPa) Bo(GPa) L(GPa) o

Particle 234.90 0.204 21 21∗ 2000∗ 8.2∗ 20∗ 10∗

Matrix 69.90 0.330 0.135 12.5∗ 350∗ 0.8∗ 0.3∗ 5∗

∗ estimated.

or the progressive damage in other type of heterogeneous materials with the same

constituents.
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Analysis of failure under presence of both plasticity and damage is very complex.

And, the calibrations of material constants require numerous assumptions which may

not be valid always. To simplify this problem, let damage be a major factor for

the failure of the matrix and the particle. To analyze the predicting capability of

this assumption, let the calibration of material constants be performed for 10% and

20% particle volume fractions using experimental data [112]. The calibration of the

material constants, i.e., Bo, L, and o, is performed by assuming that the matrix

controls the failure of the composite. These constants are calibrated by assuming a

stress limit that initiates damage. Once the stress levels are set, the material constants

are calibrated using numerical simulations by using various trial values that make the

predicted stress-strain curve fit with the experimental data. Table 4.25 and 4.26

list the calibrated material constants for 10% and 20% particle volume fractions,

respectively. The calibration of Xv, the ratio of failed material point to the total

number of material points, is also performed along with characteristic length l to

fit to experimental data, which helps estimate the failure strength of the composite

using FCA (maximum principal stress criterion). The calibrated data obtained for

10% particle volume is used to estimate the failure strength of 20% and vise versa.

The calibration is performed using DPA (anisotropic damage and isotopic damage,

see Eq. (3.2) for isotropic damage) and FCA (maximum principal stress criterion).

Table 4.25. Calibrated material parameters for 10% particle volume fraction

Materials/damage Bo (MPa) o L (GPa) Xv l

Anisotropic Damage

Fiber 0.31 4.15 20.55 0.10 0.05

Matrix 7.7E-4 16.91 10.25 0.10 0.3

Isotropic Damage

Fiber 0.31 6.150 20.60 0.10 0.05

Matrix 3.58E-6 1.59 35.25 0.10 0.30
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Table 4.26. Calibrated material parameters for 20% particle volume fraction

Materials/damage Bo (MPa) o L (GPa) Xv l

Anisotropic Damage

Fiber 0.31 4.15 20.65 0.10 0.25

Matrix 3.5E-4 6.7 25.00 0.10 0.73

Isotropic Damage

Fiber 0.31 4.00 20.60 0.10 0.25

Matrix 3.58E-6 21.7 2.52 0.10 0.73

Figure 4.54 and 4.55 show how the calibrated data fit to experiments for 10%

and 20%, respectively. For both cases, the material constants are better calibrated

for DPA approach (anisotropic and isotropic damage) compared with FCA using the

maximum principal stress criterion. The deviations of calibrated and experimental

data may be due to the current assumption of negligible plasticity. The fracture

strains of the two experimental data, i.e., for 10% and 20%, are significantly different,

approximately 2.2% and 0.4% for 10% and 20%, respectively, see Figure 4.54 and 4.55.

As these differences do not seem reasonable for 10% difference of particle volume

fraction, numerous factors can contribute for the differences including interfacial

conditions and testing conditions. The differences may in turn affect the accuracy of

the calibrated material constants to capture the physics of failure in the composite.

Figure 4.56 shows the prediction of the stress-strain curve of the particle-reinforced

composite with 10% particle volume fraction using material constants calibrated using

20% particle volume fractions. It shows the experimental data are not well captured

for this case particularly the failure strain, but the predictions of the failure stress

are closer to experimental data. Figure 4.57 shows the prediction for 20% using

material constants calibrated using 10% volume fraction of particle, this shows much

better agreement with experiments for DPA except differences in failure strain. The

predictions of FCA provide relatively good estimates for failure strain.
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Figure 4.54. Prediction of stress-strain curve using a calibrated data
for 10% particle volume fraction.

4.3.1 Failure Analysis of Composite Laminates

In this section, the two proposed approaches (DPA and FCA) are used for the

progressive damage/failure analyses of composites. These analyses are performed

using the nonlocal approach. The predictions of the progressive damage are performed

mainly for composite laminate with different lay-up configurations. First, for both

cases, i.e., DPA and FCA, the material parameters are calibrated based on the

available experimental data [46]. The material properties of the fiber and matrix

are listed in Table 4.27. Here, it should be noted that this study is performed

using 3D micromechanics approach by adopting periodic boundary conditions in all

boundary surfaces. This may slightly compromise the accuracy of the result as in

actual condition the SG should be traction free both in the top and bottom surfaces.

In this study, the calibration of material parameters is performed for the

fiber based on the unidirectional composite laminate while for the matrix, it is
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Figure 4.55. Prediction of stress-strain curve using calibrated data for
20% particle volume fraction.

Table 4.27. Material properties (Ref. [46]).

Material E (GPa) ν σT (GPa) σC (GPa) εT % εC %

Fiber 74 0.20 2.15 1.45 2.687 1.813

Matrix 3.35 0.35 0.08 0.15 0.05 -

performed using both unidirectional and [0/90]s laminates. The later one is adopted

because the calibrated parameters obtained from unidirectional lamina show some

inconsistencies. That is, as a common practice, the parameters of the fiber and matrix

are independently calibrated for axial and transverse loading options, respectively.

First, the fiber parameters are calibrated by assuming negligible damage in the matrix.

Second, the matrix parameters are calibrated. Finally, the uniaxial predictions (in

fiber direction) are performed using the calibrated parameters of both the fiber and
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Figure 4.56. Prediction of stress-strain curve for 10% particle volume fraction.

matrix. For the current case, it shows that the matrix damage dominates the failure

in unidirectional composite, which is inconsistent with the previous assumption of

negligible damage in the matrix for axial loading. This inconsistency may contribute

for poor predictions of failure strength of composite. For FCA, there is no much

calibration of material parameters except failure strength and the corresponding

volume of material failed (Xv). If the failure strengths of the fiber and matrix are

available, the volume of material failed (the ratio of number of numerical integration

points failed to total number of numerical integration points) are to be obtained.

Thus, for each constituent, Xv and characteristic length l can be iteratively selected

to fit the predicted values with experimental data. The material parameters calibrated

using both unidirectional and [0/90]s composite laminates are shown in Table 4.28.

All other material constants are assumed to be zero.

For this case, the SG of [0/90]s is meshed to have 6138 tetrahedron elements.

The predicted stress-strain curve of the composite obtained using the calibrated
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Figure 4.57. Prediction of stress-strain curve for 20% particle volume fraction.

Table 4.28. Calibrated material parameters

Materials Bo (GPa) o L (GPa) Xv l

Fiber 31.00 15.15 205.50 0.100 0.2

Matrix 0.77 1.15 85.38 0.001 0.0015

Matrix [0/90]s 0.77 7.15 118.20 0.50 0.50

parameters are compared with experimental data [46] as shown in Figure 4.58. As it

can be seen from the figure, the stress-strain curve is fairly estimated except slight

deviations for FCA-strain (maximum principal strain failure criterion) and DPA.

The calibrated material parameters can also be used to predict other examples of

composite lay-ups including [±45]s and [±55]s. For the examples used here, the

experimental data are obtained from Ref. [46].



www.manaraa.com



www.manaraa.com

131

curve and also closely estimates failure strength compared with the experimental

data obtained using axial strain. The predictions using Puck failure criterion is found

to be the best estimate from more than 12 failure criteria when it is compared to

experimental data in Ref. [3]. As depicted in Figure 4.60, the current predictions of

DPA are found to be better than the predictions obtained using Puck failure criterion.

Figure 4.59. SG of [±45]s

Composite laminate [±55]s

The SG of [±55]s is shown in Figure 4.61. It has 1.7343 × 1.22078 × 4 size in

direction 1, 2 and 3, respectively and the SG is meshed to have 6110 tetrahedron

elements. For this example, the failure strength of [±55]s is performed for matrix
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Figure 4.61. SG of [±55]s

contrary, FCA using the maximum principal stress criterion and DPA show relatively

better for predicting stress-strain curve of the composite. The prediction of Tsai (see

[3]) is the best one from 12 failure criteria. But the current predictions using FCA

shows better estimate compared with the Tsai predictions.

4.4 Fatigue Failure and Life Predictions

The fatigue life prediction is computationally prohibitive if the analysis is allowed

to run until the failure point is reached. Thus, for simplicity, the damage is

assumed to be constant for each cycle throughout the whole analysis. During
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Figure 4.62. Prediction of failure strength of [±55]s

cyclic load, the growth of the damage remains to be constant for a ceratin loading

period. Consequently, without affecting the anisotropic damage growth rate in each

constituent of the composite, a reasonable number of cycle increment, for a specified

damage amount, Δd̄, is added to the cycle number. The cycle increment can be

calculated as [13]

ΔNi =
Δd̄(

δd/δN

) , Ni+1 = Ni +ΔNi, di+1 = di + (δd/δN)ΔNi (4.2)

where (δd/δN) denotes the rate of change of damage per cycle, it is assumed to be

constant for a certain number of cycle Ni, Δd̄ denotes the damage amount to be

accounted during the cycle jump, it is usually approximated as Dc/50, Dc denotes

critical damage level. For the current analysis, Δd̄ is determined based on damage

rate per cycle and it ranges from 10−3 to 10−5. For a given global stress or strain

loading, the maximum cycle number or fatigue life N is obtained based on the critical

damage value Dc. The critical damage level is evaluated at each integration point. If
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Figure 4.64. S-N curve for particle reinforced composite.

accumulated plastic strain. However, the growth of weighted averaged damage in the

matrix is much greater than its accumulated plastic strain near the fracture point

as shown in Figure 4.65. Moreover, it is also noticed that the progressive fatigue

damage can significantly affect the effective properties of the composite as shown in

Figure 4.66. E1n and ν12n are the effective stiffness and Poisson’s ratio normalized

with the undamaged effective stiffness and Poisson’s ratio ratio of the the material,

respectively. In this analysis, the shear moduli are observed to be negligibly affected.

4.4.2 Fatigue in Brittle Material

In this section, the proposed approach is partially validated using the predictions

obtained from experimental data. The glass/epoxy composite is used for this

prediction. The fiber and matrix are assumed to have an elastic modulus of 78.5
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Figure 4.65. Weighted averaged accumulated plastic strain and
damage in particle reinforced composite.

GPa and 3.45 GPa, respectively, and with the corresponding Poisson’s ratios of 0.25

and 0.35, respectively. The fiber matrix volume ratio is 0.6. The stress ratio R = σmin

σmax

is 0.10. The experimental data are obtained from [161]. In the current prediction,

it is assumed that the material constant in Eq. (3.27) cd = 0. Since the monotonic

loading data are not available, the calibration of the material constants, Bo, L and o

are performed based on the fatigue data, i.e., minimum stress/endurance limit from

experimental S-N curve and its corresponding fatigue life. Finally, the fatigue life of

the composite for various loads is estimated based on the calibrated data.

It should be noted that since the current approach is entirely based on

micromechanics analysis particularly on the local fields, the specified material

constants for each constituent are required to sufficiently estimate the fatigue life of

the composite. However, if these material constants are not available, it is suggested

to assume the failure mode for each loading direction. For instance, for continuous
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Figure 4.66. Degradation of effective properties of particle reinforced composite.

fiber reinforced composite, it may be reasonable to assume that the fiber controls

the failure of the composite in the fiber direction while in the transverse direction

the matrix controls the failure. Based on these assumptions, the specified material

constants may be calibrated for each constituent of the composite.

The material constants Bo, L and o can easily be calibrated for fiber using uniaxial

load. Let the average minimum stress at the specified fatigue life N , be approximately

0.7375 GPa as it can be seen from S-N curve depicted in the Figure 4.67. Then,

one can calibrate the damage threshold Bo as follows. First, apply the global

load equivalent to the minimum stress then evaluate the damage at each numerical

integration points using Eq. (3.26). Second, it is known that the initial damage occurs

whenever YEQ = Bo. Thus, we can freely select the value of Bo to have infinitesimally

small damage for the given global load. For the current case, Bo = 12.772 MPa is

selected for infinitesimally small damage. The material constants in Eq. (3.29), L
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and o, are also obtained using the calibrated value of Bo and minimum stress with

the corresponding fatigue life N .

In this case, the fatigue life N is iteratively simulated for different values of L

and o by applying the global load equivalent to the minimum stress. The process is

repeated until the predicted fatigue life is sufficiently equal to the fatigue life measured

by experiment. If these two values are nearly equal, the values of L and o are then

used as calibrated material constants. For the current case, the calibrated values of L

and o are found to be 970 GPa and 8, respectively. These constants are in turn used

to estimate the fatigue life of the composite. One should notice that critical damage

Dc is also a material parameter. For this case, 0.35 and 0.55 are used for the fiber

and matrix, respectively.
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Figure 4.67. S-N for continuous fiber-reinforced composite.

Using the calibrated material constants, the fatigue life of the composite for various

loads is generated as shown using the S-N curve in Figure 4.67. The prediction shows
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Figure 4.68. Weighted averaged damage at failure.

a good agreement with the experiment. It is also noticeable to see the variation

of experimental data which precipitates from various contributing factors such as

variability of manufacturing process, human error, etc. In these predictions, it is

noticed that, at failure, the weighted average damage in the composite is not affected

by the magnitude of the applied load as shown Figure 4.68. Similar predictions

are also observed for other components of the damage tensor. It is clear that

the progressive fatigue damage affects the effective stiffness of the composite. For

instance, for global load, 1.079 GPA, it is observed that the progressive fatigue

damage induced significant degradation of effective elastic modulus and also affect

the Poisson’s ratio of the composite as shown in Figure 4.69. However, the transverse

shear moduli are insignificantly affected.

In another estimation of fatigue life of unidirectional continuous fiber-reinforced

composite, the material properties listed in Table 4.29 are used. The fiber volume

fraction is approximately 0.70. In this analysis, let the composite be loaded in
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Figure 4.69. Degradation of effective stiffness and Poisson’s ratio.

transverse direction. Thus, it is reasonable to assume that the matrix controls the

failure of the composite. Consequently, the materials constants Bo, L, and o are

calibrated as described for the first case based on the matrix and are approximately

found to be 0.5588 MPa, 5 GPa and 6, respectively. In this case, we also assume

cd = 0. The critical damage values of Dc, 0.33 and 0.53, are used for the fiber and

matrix, respectively. The fatigue life for transversely loaded composite is estimated

based on the calibrated material. The prediction is in a fairly good agreement with

the experiments as shown in Figure 4.70.

For transverse load, one can expect higher stress distribution in the fiber matrix

interface due to the interaction between the two constituents with higher material

property mismatch. This stress disturbance may result in significant material

degradation locally. For instance, for 37 MPa transverse cyclic load, the effect of stress

disturbance can be seen from the weighted averaged damage propagation in the matrix
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Table 4.29. Material property for fatigue analysis (Ref. [162])

Material E1 GPa E2 GPa G12 GPa ν12 ν23

Fiber 194.30 15.00 18.10 0.275 0.275

Matrix 3.45 3.45 1.27 0.350 0.350
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Figure 4.70. S-N for transversely loaded continuous fiber-reinforced composite.

as shown in the Figure 4.71. It can easily be noticed that the damage propagation

in the transverse direction d22 is significantly larger than the other damage tensor

components which results from the higher stress disturbance along the interface of

the composite.
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Figure 4.71. Weighted averaged damage propagation in the matrix.
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5. CONCLUSION

Failure of heterogeneous materials is analyzed using pointwise local fields and a

nonlocal approaches by employing micromechanics approach based on MSG. MSG

helps to accurately and efficiently predict both effective properties and local fields in

heterogenous materials. The predictions obtained from these analyses are compared

with various micromechanics approaches including mean field approaches (MT and

DI), GMC and HFGMC, and also 3D FEA. The static failure predictions of several

examples of heterogeneous materials including continuous fiber-reinforced composite,

particle-reinforced composite, discontinuous fiber-reinforced composite, and woven

composite are analyzed by employing various failure criteria including maximum

normal stress and strain maximum shear stress, Tsai-Hill and Tsai-Wu criteria.

From static failure analysis, it is learned that the mean field approaches (MT

and DI) cannot accurately predict the initial failure strengths and initial failure

envelopes of the heterogeneous materials due to their inability to accurately predict

the local fields particularly for SG with complex microstructure. GMC and HFGMC

predict better compared with the mean field approaches, however these approaches

also poorly predict the static failure strengths for both uniaxial and biaxial loading

conditions using maximum normal stress and strain failure criteria. The predictions

of these approaches show relatively better agreement with 3D FEA for Tsai-Hill

failure criterion. The predictions of MSG are in an excellent agreement with the

predictions of 3D FEA for both uniaxial and biaxial loading conditions using all

considered failure criteria. The nonlocal approach also estimates failure with much

less mesh dependence compared with pointwise approach. It is also learned that the

predictions of nonlocal and pointwise approaches show close prediction irrespective of

the characteristic length for uniaxially loaded continuous fiber-reinforced composite,
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while they show much variation for transversely loaded case. Generally, the two

approaches exhibit significant variations if the microstructure experiences higher

local field gradients. The predictions obtained using nonlocal approach is found to

be more reasonable as it considers the effects of local field gradient near the point of

failure.

Among failure criteria, the prediction obtained from maximum shear stress

and Tsai-Hill criteria are in an excellent agreement. It is also noticed that the

maximum normal stress failure criterion produces conservative predictions compared

to all other failure criteria for most of the cases, and yet it lacks of including

the interaction effect due to multiaxial stress states. It is also observed that, for

continuous fiber-reinforced composites, the axial failure strain is independent of the

volume fraction of the fiber for maximum strain failure criterion, while the transverse

failure strain significantly varies with volume fraction of the fiber.

The effects of imperfect interface on the elastic properties and failure strength of

heterogeneous materials are analyzed using linear traction-displacement interfacial

model. The exact solutions of layered composites with imperfect interface are

obtained using MSG. The predictions of the exact solution show that interfacial

stiffness does not affect longitudinal elastic modulus, all Poisson’s ratios and shear

modulus G12. However, it significantly affects transverse Young’s and shear moduli.

The predictions obtained using exact solutions show excellent agreement with the

results of 3D FEA obtained by employing periodic boundary conditions. The

interfacial analysis of layered composite shows that it is worthwhile to consider the

effect of imperfect interface for structural design optimization, wave propagation and

multiphysics properties of multifunctional materials.

The predictions of MSG, 3D FEA and Hashin’s upper and lower bounds show

that imperfect interface considerably affects both elastic effective properties and

failure strength of heterogeneous materials. It is also noticed that the predictions
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of MSG and 3D FEA show excellent agreement for all examples except that 3D FEA

using INTER204 in ANSYS can not sufficiently predict the axial shear modulus.

In 3D FEA, the application of external load or displacement boundary condition

is mandatory to obtain effective properties, and also the results are obtained by

using nonlinear analysis. The excessive external load applications may lead to

interpenetration of constituents across the interface which affect the prediction of

effective properties [82]. Moreover, for some cases, the output of analyses may not be

easily obtained due to convergence problem. These problems are not encountered by

using MSG. MSG does not use any external load or displacement boundary condition

to predict the effective properties for both perfect and imperfect interface. A simple

linear analysis leads to reasonable predictions of both effective properties and initial

failure strength of heterogeneous materials.

The progressive damage and fatigue life of heterogeneous materials are analyzed

using micromechanics approach. The proposed approaches (DPA and FCA) are

incorporated into MSG to estimate the fatigue life and anisotropic damage evolution

of the composite. The fatigue life is estimated and found to be good agreement with

the experimental data. As the proposed approach is mainly based on micromechanics

particularly on the local fields, it requires material properties specific to each

constituent. The current prediction may be improved if all materials data are

available. The current calibration approach is limited to unidirectional loading

option. It is suggested to use non unidirectional laminate together with unidirectional

laminate to avoid non-uniqueness of the material constants and also to make it more

rigorous.

Among the proposed failure analysis approaches, DPA outperforms all in

estimating the failure strength, although the number of material constants required

is larger and also difficult to measure or calibrate them. FCA works relatively better

for more brittle type of failure where the plasticity is negligible. The advantage

of this approach is that it does not require many material constants and they are

relatively easily quantifiable using experiments particularly for isotropic material.
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Static failure analysis approach, when applied with nonlocal approach, can estimate

the load carrying capacity of composite with brittle type failure.

Generally, the current study shows that micromechanics based failure analysis is

more rigorous and also provide more reasonable predictions of failure strength and

fatigue life of composites. This approach usually takes extended time compared with

macromechanical approach. However, SwiftComp can be used to perform the required

analysis as accurate as 3D FFA and yet much more efficient.
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6. RECOMMENDATIONS

Although failure of homogeneous materials can be better predicted compared

with heterogeneous materials, there are still challenges of predicting failure for

homogeneous materials. This problem mainly is due to lack of fully developed failure

constitutive models. Despite this fact, i.e., lack of fully developed model, most of the

failure criteria used for analyzing failure in heterogenous materials are derived from

failure model/criteria developed for homogeneous materials. This could potentially

be one of the reason that failure are not adequately analyzed for heterogeneous

materials. Moreover, as seen from the current study, macromechanical approach

cannot rigorously predict failure in heterogeneous materials. This approach fails

to consider the stress distribution in the microstructure that plays significant role

for predicting failure. It is clear that unless failure is rigorously analyzed for each

constituent independently, it is nearly impossible to effectively predict failure in

heterogeneous materials. Based on this, it is recommended to perform failure analysis

using micromechanics approach.

The idealization of microstructure of heterogeneous materials is a major problem

and vital to obtain both the effective properties and failure strength of composite.

However, it significantly affects the prediction of failure strength. For instance,

continuous fiber-reinforced composite is modeled as a rectangular array with circular

fiber in this study. This microstructure is highly idealized to present the actual

microstructure of the composite, nevertheless it still provides a reasonable predictions

of effective properties. But this does not hold true for prediction of failure or strength.

Moreover, randomly generated microstructure is commonly used to analyse effective

properties and failure. Although it better simulates the actual microstructure, it

still requires a careful generation of microstructure to sufficiently predict failure

strength. Moreover, although it is possible to incorporate cracks, voids and inclusion
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of all defects including variable interfacial conditions, it is difficult to match with

actual coupon. Thus, it is recommended to exhaustively simulate the microstructure

as it is an important step toward achieving better predictions of failure strength

of heterogeneous materials. Better microstructure can be simulated by effectively

predicting manufacturing process. This is the most important step as all the results

of the analyses are highly influenced by the microstructure used for predicting any

desired parameters.

The other major problem in failure analysis is lack of accurate constitutive

model. The first and the most important step is to develop better constitutive

model that can sufficiently capture the physics of failure in homogeneous materials.

The constitutive model should able to accommodate multiaxial state of local fields.

The developed constituent model should be extensively validated with experiment

for possible scenarios. After acquiring sufficient knowledge of the constituents, the

failure analysis of heterogenous materials can be performed. This approach has a

strong potential to provide a more reasonable prediction of failure. The challenge

here could be the interfacial conditions which can possibly affect strength predictions,

particularly for transversely loaded structures. Thus, the interfacial conditions should

also be treated independently.

Failure/fracture is commonly analyzed using fracture mechanics and continuum

damage mechanics (CDM). Fracture mechanics requires initial finite crack length,

crack distributions, and specific locations. This makes it very subjective to assign the

required crack inputs for a given microstructure. This approach is also ineffective,

in particular, when applied for heterogenous materials with complex microstructure

(for example short fiber composites) where the modes of failure are different from

point to point based on the orientations of the fibers. Moreover, it cannot be applied

for material with no initial crack. On the other hand, continuum damage mechanics

is applicable for virgin material. This approach introduces strain localization and

instability in numerical analysis for large damage variable, and it is also observed that

energy release rate due to fracture approaches to zero as element size/mesh is refined.
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Although nonlocal approach can potentially reduce the effect of the pathological mesh

dependence of the results, the problem is still not fully resolved.

Both virgin material point (no crack point) and cracks are inevitable in a given

material, thus the combined use of fracture mechanics and continuum damage

mechanics is highly recommended to better handle failure in any type of heterogenous

material and structures. The way forward is to solve the deficiencies of both fracture

mechanics and CDM. The drawbacks of continuum damage mechanics can be partially

handled by using nonlocal constitutive modeling. By setting a criterion for crack

initiation, the initial crack length and its corresponding orientation are approximated

based on the results of anisotropic damage variables obtained from CDM analysis.

Then fracture mechanics will come to play to analyze the propagation of crack

based on the local dominating modes of failure. The other challenge in CDM is

to effectively characterize the damage potentials or damage function. This requires

the development of a thermodynamically consistent constitutive model for failure.

The combined approach will create a synergetic effect to achieve the objective,

i.e., accurate failure analysis, by employing local-global failure approaches, i.e.,

multiscale failure approach. For particular type of heterogenous materials,

metal-matrix composite, crystal plasticity based failure analysis is recommended to

more rigourously analyze failure and damage in heterogeneous materials.

Finally, it is not always easy to apply micromechanics based failure analysis for

complex structural components, and it is not also convenient to apply constituent

based failure analysis for plate/shell elements. In this case, it is recommended to

enhance macromechanical failure analysis model by multiplying a coefficient with the

stress ot strain field obtained using macromechanical approach. This coefficient can

be estimated based on the orientations of fiber, material properties, fiber volume

fraction and loading conditions. This could help to use more reasonable stress or

strain field than using the one obtained from macromechanical analysis.
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